Focusing on Reducing Rural Road Departures (Video)

The Federal Highway Administration recently released a video highlighting analytical and highway design efforts being used to prevent traffic deaths on rural roads by reducing roadway departures. The FHWA video introduces several relatively low-cost safety countermeasures to help drivers stay in their travel lanes and reduce the potential for, and minimize the severity of, rural roadway crashes, including rumble strips, enhanced signage, the Safety EdgeSM, and high-friction surface treatments.

While traffic crash locations can change from year-to-year, the FHWA recommends using a data-driven systemic analysis to assess types and patterns of rural crashes, roadway design where crashes occur, and specific areas with high concentrations of crashes or risk of crashes. Analysis of these data can also focus on when certain types of crashes occur. This information can help determine priority locations and design solutions that can be used to address needs in specific locations.

To learn more about the program and solutions designed to prevent traffic deaths on rural roads by reducing roadway departures, see the Federal Highway Administration' EDC-5 Innovation Reducing Rural Roadway Departures.  More information on what New Jersey is doing during this round on the topic, can be found at: What is Reducing Rural Roadway Departures.

Paving the Way to Better Roads at Lower Costs

Pavement Preservation Projects Benefit New Jersey Taxpayers and Commuters

Diane Gutierrez-Scaccetti, Commission of the NJ Department of Transportation

The last Commitment to Communities newsletter (Volume 7) highlighted some of the wonderful volunteerism of New Jersey Department of Transportation (NJDOT) employees. In this volume, I will share how the NJDOT achieves consistent progress through focused investments that keep our infrastructure in a state of good repair. Not only does the NJDOT prioritize improving the quality of life for our residents, but we also take great pride in the preservation and maintenance of our transportation system for the benefit of all New Jerseyans.

Within the last decade, NJDOT has significantly increased our use of pavement preservation treatments and preventive maintenance. Instead of waiting until pavements deteriorate to poor conditions requiring conventional, more costly resurfacing or rehabilitation treatments, preventive maintenance treatments are being applied at a fraction of the cost to sections of roadway in good or fair condition.

Slurry Seal treatment being applied to the Route 33, CR 527 to Howell Road Pavement Preservation Project in Monmouth County.

The purpose of these treatments is to renew and seal the pavement surface and extend the functional life of the pavement by six to twelve years depending on the preservation method. Sealing the roadway prior to deterioration reduces the chances for water to infiltrate the pavement and therefore prevents the opportunity for potholes to form. Since preservation treatments are less expensive than traditional resurfacing (one third to one half of the cost) preservation becomes a more cost effective life cycle treatment strategy while also minimizing the opportunity for potholes to develop throughout the life of the pavement.

In addition to providing cost savings to the state (and in turn, the tax payer), these methods can be implemented without major traffic disruptions and with minimal lane closures—saving commuters time and frustration. Furthermore, these projects have an accelerated design and construction phase, with most projects completed in one year.

Completed Route 33, CR 527 to Howell Road Pavement Preservation Project in Monmouth County.

The method of pavement preservation is not an idea unique to NJDOT. This method is nationally accepted as a cost effective treatment in pavement life cycle strategy. As a Department, we participate in the North East Pavement Preservation Partnership (NEPPP), a regional component of the national pavement preservation initiative facilitated by the National Center for Pavement Preservation.

System preservation is a requirement under federal legislation MAP-21, the Moving Ahead for Progress in the 21st Century Act. MAP-21 offers much needed funds in transportation investment.

Because these preventive techniques are so beneficial, we have substantially increased our annual investment in pavement preservation projects from $3 million in 2013 to $50 million in the 2020 program. Over the last two years, we have successfully designed or delivered 22 projects. They reflect our commitment to be responsible stewards of the 27-cent gas tax increase.

We look forward to increasing our investment levels in future years.

Pavement preservation is just one example among many of how NJDOT is committed to keeping New Jersey’s roadways in a state of good repair and by doing so, improving the lives of our residents. I strongly believe that any opportunity where we can take a proactive approach and in turn save the state and taxpayer time, money and disruption is an opportunity worth investing in.

Once again, thank you for taking the time to read this and please feel free to share it with your colleagues. If you have any questions about any of the information in the newsletter, please feel free to contact NJDOT’s Office of Constituent Relations at 609-963-1982.

Diane Gutierrez-Scaccetti
Commissioner

This article first appeared in the Fall 2019 NJDOT Commitment to Communities Newsletter.

NJDOT Safety Countermeasures Training and Education Videos

The following videos describe six of FHWA’s Proven Safety Countermeasures that improve pedestrian safety. NJDOT developed these videos to train and educate viewers on the design features and safety benefits of these initiatives.

FHWA began promoting Proven Safety Countermeasures in 2008 to encourage implementation among state, tribal and local transportation agencies. The list was updated in 2012 and 2017 and now comprises 20 countermeasures that support infrastructure improvements. These safety treatments and strategies were chosen based on proven effectiveness and benefits and can be adopted to reduce roadway departures, and intersection, and pedestrian and bicycle crashes.

Safe Transportation for Every Pedestrian (STEP) has been included as an Innovation under FHWA’s Every Day Counts (EDC) Rounds 4 and 5.  NJDOT has prepared videos for training purposes on several of the topics featured under STEP – specifically, Pedestrian Crossing/Refuge Islands, Pedestrian Hybrid Beacons, Road Diets and Leading Pedestrian Intervals. Other strategies advanced under STEP are Rectangular Rapid Flash Beacons, Crosswalk Visibility Enhancements, and Raised Crosswalks.

NJDOT chose the following safety initiatives as subjects for safety videos:

 

What is a Leading Pedestrian Interval?

Leading Pedestrian Intervals (LPIs) give pedestrians the opportunity to enter an intersection 3-7 seconds before vehicles are given a green indication. With this head start, pedestrians can better establish their presence in the crosswalk before vehicles have priority to turn left.

What is a Walkway?

Walkways are any type of defined space or pathway for use by a person traveling by foot or using a wheelchair. These may be pedestrian walkways, shared use paths, sidewalks, or roadway shoulders. FHWA defines a pedestrian walkway as a continuous way designated for pedestrians and separated from motor vehicle traffic by a space or barrier. By contrast, sidewalks are walkways that are paved and separated from the street, generally by a curb and gutter.

What is a Pedestrian Crossing Island?

Medians and Pedestrian Crossing Islands in Urban and Suburban Areas are located between opposing lanes of traffic, excluding turn lanes. They provide a safe place for pedestrians to stop at the midpoint of the roadway before crossing the remaining distance. This is particularly helpful for older pedestrians or others with limited mobility.

What is a Pedestrian Hybrid Beacon?

Pedestrian Hybrid Beacons (PHBs) are a beneficial intermediate option between Rectangular Rapid Flash Beacons (RRFBs) and a full pedestrian signal. They provide positive stop control in areas without the high pedestrian traffic volumes that typically warrant signal installation.

What is a Road Diet?

Road Diets are the removal of a travel lane or lanes from a roadway and use of the space for other purposes and travel modes, such as bike lanes, pedestrian refuge islands, or transit.

What is a Reduced Left-Turn Conflict Intersection?

Reduced Left-Turn Conflict Intersections are geometric designs that alter how left-turn movements occur in order to simplify decisions and minimize the potential for related crashes. Two highly effective designs that rely on U-turns to complete certain left-turn movements are known as the restricted crossing U-turn (RCUT) and the median U-turn (MUT).

Get Oriented with EDC-5 Innovations – Webinars and Baseline Report

In June 2018, FHWA announced the fifth round of Every Day Counts Innovations (EDC-5). From September 10-26, 2018, the agency held Orientation Webinars, 90-minute sessions to introduce each EDC-5 innovation area. The EDC-5 website posted webinar recordings, factsheets, and presentation slides following each session.

See the full list of orientation webinars for EDC-5 innovations here.

Every two years, FHWA works with state departments of transportation and other public and private stakeholders to identify innovative technologies that merit widespread deployment. State Transportation Innovation Councils (STICs) in all fifty states then meet to evaluate these innovations and lead deployment efforts.

Innovations for EDC-5 include weather-responsive management strategies, collaborative hydraulics, rural roadway departures, advanced geotechnical exploration methods, unmanned aerial systems (UAS), virtual public involvement, use of crowdsourcing to advance operations, project bundling, Safe Transportation for Every Pedestrian (STEP), and value capture of transportation.

In Fall 2018, transportation leaders and front-line professionals from across the country gathered at five Regional Summits to discuss the EDC-5 innovations, exchange ideas with industry counterparts, and provide feedback to FHWA on resources needed to support innovation adoption.

The NJDOT team attended the Regional Summit in Albany, New York. Following the summits, New Jersey finalized its selection of innovations, established performance goals for the level of implementation and adoption over the upcoming two-year cycle, and initiated its efforts to implement the innovations with the support and assistance of the technical teams established for each innovation.

In the Spring of 2019, the FHWA issued a summary report, EDC-5 Summit Summary and Baseline Report that describes the Regional Summits and indicates the priority innovations for deployment being taken by the individual states.

Local Peer Safety Exchange – 3rd Event

FHWA and NJDOT held a series of three Local Safety Peer Exchanges for municipal and county representatives to discuss local initiatives that demonstrate best practice in addressing traffic safety. The third of these peer exchanges was held on March 26, 2019. Topics discussed included NJ safety performance targets, use of Safety Voyager, substantive vs. nominal approaches to design, systemic vs. hot spot approaches to safety, and discussion of FHWA safety countermeasures, among others.

Make Your Mark

Safety Voyager

Project Screening

Data-Driven Safety Analysis

Pavement Friction Surface Treatments

A Municipal Perspective

Proven Safety Countermeasures

Quantifying Greenhouse Gas Emissions of Asphalt Pavement Preservation at Construction and Use Stages Using Life Cycle Assessment

Employing pavement preservation techniques can help reduce greenhouse gas emissions, and contribute to savings for both transportation agencies and drivers, according to a recently published study in the International Journal of Sustainable Transportation. The researchers determined that extending the life of pavement through preventive maintenance  can reduce greenhouse gases by 2 percent; save transportation agencies between 10 to 30 percent in spending; and reduce cost for drivers between 2 to 5 percent on fuel consumption, tire wear, vehicle repair, and maintenance because of smoother surfaces (Bates 2019). This research can assist transportation agencies like NJDOT and local public agencies consider the right maintenance strategies when determining environmental effects in future projects.

This research is notable, in part, because pavement preservation has been a hot topic among many state highway agencies.  The Federal Highway Administration’s Every Day Counts (EDC) program brought greater attention to the benefits of pavement preservation by making it one of its national initiatives in the fourth round of the EDC program. Through EDC-4, many states made commitments to increase their use of pavement preservation treatments and give a fuller commitment to its integration in their maintenance programs (FHWA 2018a).

NJDOT has significantly increased its use of preventive maintenance treatments on roadways in good or fair condition in recent years. Applying preventive maintenance treatments early has proven to be cost-effective by slowing the rate of deterioration and allowing NJDOT to reduce the backlog of deficient pavements.  The lead author  for this research, Hao Wang, previously worked as the co-investigator on a NJDOT-funded research study, Appropriate Implementation of Pavement Preservation Treatments, completed in 2015. That study looked at the pavement preservation techniques that NJDOT could use on its high volume state-maintained roads (Wang & Vitillo 2015).

Pavement preservation consists of surface refreshment to alleviate functional indicators of deterioration, such as friction, minor cracking, or oxidation. The three pavement preservation treatments considered in this recently published research were thin asphalt overlay (placing up to 2 inches of asphalt on roads), chip seal (spraying asphalt emulsion on pavement and laying aggregate), and crack seal (filling cracks with rubberized asphalt or polymer-modified asphalt with some filler).

While previous studies have looked at the environmental impact of preservation treatments at the construction stage, few have considered how the change in pavement smoothness affects vehicle fuel consumption and tailpipe emissions. The purpose of this study was therefore to systematically look at both the construction and use stage to determine the environmental impacts of several pavement preservation treatments throughout the whole life-cycle.

In order to quantify the environmental impact, the researchers used life-cycle assessment (LCA), focusing specifically on CO2 emission for global warming potential (GWP). To determine the emissions during construction stage, the group looked at the raw material, manufacturing, transport, and placement.

Illustration of different stages in pavement LCA with system boundary (Wang et  al. 2019)

Researchers measured pavement condition using the International Roughness Index (IRI), which states are required to report to the FHWA as it provides a standardized and objective measurement methodology. IRI models for pre- and post-treatment were then created with data obtained from the Long-Term Pavement Performance (LTTP) program Specific Pavement Studies (SPS-3). The LTTP program was established in 1986, and has been maintained by the FHWA since 1991, with the purpose of collecting and storing pavement performance data in a centralized database (FHWA 2019). SPS-3: Preventive Maintenance Effectiveness of Flexible Pavements specifically compares the effectiveness and mechanisms of selected maintenance treatments to preserve and extend pavement service life, safety, and ride quality (FHWA 2018).

The pavement’s pre- and post-treatment effects on vehicle fuel consumption and air quality were then analyzed using data from the Highway Development and Management Tool (HDM-4) and the Motor Vehicle Emission Simulator (MOVES). HDM-4 is a software package that is used worldwide for analysis, planning, management, and appraisal of road maintenance, improvements, and investment decisions. MOVES is the EPA’s emission modeling system for mobile sources, which is used at all project levels to estimate for criteria air pollutants, greenhouse gases, and air toxics.

The results for the CO2 emissions at the construction stage showed significant differences in energy consumption for the three pavement preservation treatments, mostly due to the varying raw materials and manufacturing processes. Thin asphalt overlay had the highest energy consumption, followed by chip seal, and then crack seal, which requires a comparatively small amount of material over the entire process. Additionally, thin asphalt overlay tends to have a higher cost compared to the other two. At the use stage though, thin overlay showed the highest reduction of CO2 emissions, based on the post-treatment IRI values, and crack seal the lowest reduction.

A machine compacts asphalt over existing pavement at a construction site at John F. Kennedy International Airport in New York City (Wang 2019).

Despite their environmental impacts, the various preservation treatments still had an overall benefit when quantified using a life-cycle assessment approach, according to the researchers. Additionally, they found that the timing of preservation treatment could have a large effect on the subsequent emissions at the use stage. Specifically, for thin overlay and chip seal, the optimal time to achieve maximum life-cycle environmental benefit becomes earlier as traffic volume or initial IRI value increases. Despite the variance in effectiveness over the life-cycle, all three treatments reduced emissions overall.

In explaining the rationale for the research, the study’s authors  note that transportation sector is second to electricity in generating greenhouse gas emissions among all U.S. end-use sectors at 27 percent. Additionally, fuel consumption of vehicles accounted for 83 percent of the total greenhouse gas emissions within the transportation sector in 2015. In December 2018, Governor Phil Murphy announced that New Jersey would be rejoining the Regional Greenhouse Gas Initiative, a group of neighboring states that have set policy goals and initiatives in order to achieve a 100-percent clean-energy portfolio by 2050 (Murphy 2018). Improving the performance of existing highways is well-aligned with this initiative.

By filling the gap in research focused on  the entire life-cycle environmental impacts of pavement preservation treatments, the research offers important information for life-cycle assessment in future roadway projects. As transportation agencies look at how to manage their current assets, reduce costs, and avoid and minimize environmental impacts, pavement preservation offers a multitude of benefits to help achieve these goals.

Shown above is a Bergkamp M1, which can be used for slurry seal and microsurfacing. Source: By Eric Pulley – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5176467

Citations:

Bates, Todd. “Keeping Roads in Good Shape Reduces Greenhouse Gas Emissions, Rutgers-Led Study Finds.” Rutgers Today. January 14, 2019. https://news.rutgers.edu/keeping-roads-good-shape-reduces-greenhouse-gas-emissions-rutgers-led-study-finds/20190114#.XH2SRYhKiUl.

BTS. “Road Condition.” Bureau of Transportation Statistics. June 2015. https://www.bts.gov/content/road-condition.

FHWA. “Long-Term Pavement Performance.” FHWA. 2019. https://highways.dot.gov/long-term-infrastructure-performance/ltpp/long-term-pavement-performance.

FHWA. “Pavement Preservation (When, Where, and How).” Center for Accelerating Innovation. May 30, 2018a. https://www.fhwa.dot.gov/innovation/everydaycounts/edc_4/pavement.cfm.

FHWA. “Specific Pavement Studies.” FHWA. March 12, 2018b. https://highways.dot.gov/long-term-pavement-performance/data-collection/specific-pavement-studies.

Murphy, Phil. “Murphy Administration Proposes Rules For State’s Re-Entry Into Regional Greenhouse Gas Initiative.” Office of the Governor. December 17, 2018. https://nj.gov/governor/news/news/562018/approved/20181217b.shtml.

Vitillo, Nicholas, and Hao Wang. “Appropriate Implementation of Pavement Preservation Treatments.” NJDOT. April 2015. https://www.state.nj.us/transportation/refdata/research/reports/FHWA-NJ-2015-011-I.pdf.

Wang, Hao, Israa Al-Saadi, Pan Lu, and Abbas Jasim. “Quantifying Greenhouse Gas Emission of Asphalt Pavement Preservation at Construction and Use Stages Using Life-cycle Assessment.” International Journal of Sustainable Transportation. January 11, 2019. https://www.tandfonline.com/doi/abs/10.1080/15568318.2018.1519086?journalCode=ujst20.

2019 NJDOT TRB Roundtable Discussion

Below you can view 2019 presentations and session notes provided by NJDOT staff who attended the 98th Annual Meeting of Transportation Research Board (TRB), which is grouped by their bureau or unit. Click on the image in each section to view the slides. You can also download the entire set of presentations here: 2019 NJDOT TRB Roundtable Slides (9 MB). The TRB AMOnline portal provides access to all available TRB papers, presentation slides, and visual aids.

I. Introduction to TRB

A summary of the Annual TRB Meeting, along with the presenters represented.

II. Statewide Planning

• Performance Management
• Federal TPM Structure
• De-carbonizing Transportation
• Equity in Pedestrian Planning
• Shared Mobility

III. Environmental Resources

Integrating Extreme Weather Resilience Into Transportation Asset Management (Session 1713):

• FHWA Pilot Overview
• New Jersey's Approach
• Case Study Area
• Linking Extreme Weather and Asset Management
• Top Project Findings - Results

IV. Transportation Systems Operations & Support

• Artificial-Intelligence-Aided Automated Detection of Railroad Trespassing
• Task Force on Transit Safety Meeting
• St. Paul, Minnesota – Vehicle x Pedestrian Accident Prevention
• Best Practices and Techniques for Clearing Various Interchange and Intersection Configurations
• Clear Roads Winter Maintenance Pooled Fund
• Impact of Utilizing CEI Consultants on Highway Construction Project Cost and Schedule Performance

V. Transportation Mobility

• Examining the Disruptive Forces Facing DOTs
• Expanding and Enhancing the Capabilities of Traffic Management System
• Today’s Teen, Tomorrow’s Transportation Professional: Adapting and Preparing for the Future of Work
• A National Dialogue on Highway Automation: Advancing the Conversation
• Automated Vehicles (AV) 3.0
• Knowledge Management
• Emerging and Innovative Public Transport and Technologies
• Shared Mobility, Ride hailing and Emerging Transportation Trends
• Intelligent Transportation System Project Updates-International
• Visibility of Signs and Roadway Markings: LiDAR-based Assessment of Highway Traffic Sign Visibility
• Speed Limits 2019: Current Perceptions, Technologies, and the Future
• State DOT Innovation Programs: Identifying New Technologies and Practices from the Front Lines
• Connected Vehicles Pilots: Lessons Learned

VI. Bureau of Statewide Strategies

• Making Asset Management the New Normal: Moving from Implementation to Integration
• Transportation Asset Management Committee
• Emerging Asset Management Tools, Techniques, and Performance Measures
• Operations Resilience: How to Keep Operating When the Sh*t Hits the Fan
• Integrating Extreme Weather Resilience into Transportation Asset Management
• Knowledge Management Task Force
• Visualization in Transportation Committee
• Connected and Automated Vehicles
• Pricing in an Evolving Mobility Ecosystem
• Best Papers from the 2018 Access Management Conference
• Advancing Community Vitality with 21st Century Mobility
• International Programs on Road Vehicle Automation
• Connected Vehicle Pilots: Lessons Learned

VII. Local Aid & Economic Development

• Facilitating Equitable Outcomes: The Intersection Between Public Engagement & Equity in Transportation
• Strategies to Enhance Public Involvement
• Transportation & Public Health

VIII. Civil Rights & Affirmative Action

• Successful DBEs
• Commercial Useful Function
• Safety and Health in Environmental Justice Communities
• Study: Documenting Transportation Inequities
• National Environmental Policy Act Documentation Effects of Current Presidential Executive Orders
• NEPA Updates
• The Equity Equation: Meaningful and Innovative Strategies That Define and Address Unmet Needs in Under-served Communities
• Sub-committee on Environmental Justice

IX. Bureau of Structural Engineering

• Resilience, Safety, and Security of Bridges and Tunnels: US and International Topics
• Latest Innovations in Accelerated Bridge Construction (ABC)
• General Structures Committee, Traffic Structures Subcommittee, Steel Bridges Committee, Seismic Design and Performance of Bridges Committee, Accelerated Bridge Construction Committee
• AASHTO COBS / FHWA Structures Collaboration
• Transportation Secretary Elaine L. Chao Addresses “Our Transportation Future"
• FHWA Long-Term Bridge Performance Program (LTBP)
• Advances in Structural Engineering: Bridges and Ancillary Structures
• Advances in Seismic Bridge Analysis and Design

X. Bureau of Research

• The Innovation Culture: Building New Bridges Between Research and Practice
• Asphalt Concrete Cracking: Testing, Modeling, and Field Studies
• U.S. DOTs Safety Data Initiative: Visualizing and Using Data for Safety
• State DOT Innovation Programs: Identifying New Technologies and Practices from the Front Lines
• Visibility of Signs and Roadway Markings
• Exhibits: Provide free training
• Beyond Research: From Innovation to Economic Growth
• No Boundaries Roadway Maintenance Practices
• Standing Committee on Polymer Concretes, Adhesives, and Sealers; Standing Committee on Concrete Bridges; Standing Committee on Corrosion
• Corrosion Protection of Metallic Structures and Marine
• Evaluation of Transportation Structures Using Non-Destructive Testing Methods

XI. NJDOT Research Library

• Workshop: Developing a Roadmap for Ecologically Sustainable Transportation
• Transportation Research Thesaurus (TRT) Subcommittee Meeting
• TRB Information Services Committee Meeting
• Workshop: The Long Engagement: From Writing Data Management Plans to Actually Managing Data
• Workshop: Knowledge Management 101: Strategies for Discovering the Best Fit for Your Organizational Needs
• Poster Session: Current Issues in Ecology and Transportation
• Poster Session: Making Transportation Research Smart, Sustainable, and Equitable Through Libraries, Information, and Data
• Event: Developing Climate Adaptation Strategies That Address Ecological Concerns Associated with Transportation Facilities
• Library and Information Science for Transportation (LIST) Committee Meeting

XII. Division of Multimodal Services

• Eye In The Sky – Use of Unmanned Aerial Technology
• Corridors and Freight Performance Measurements

NJ STIC 2018 Winter Meeting

The NJ State Transportation Innovation Council recently held its Winter Meeting. The meeting began with FHWA and NJDOT providing a recap of the Every Day Counts Round 5 (EDC-5) Regional Summit.   FHWA's Innovation Coordinator & Performance Manager provided a brief overview of the EDC-5 Initiatives.  New Jersey along with all other states assessed its current efforts and set goals for implementation of the EDC-5 Initiatives for the next two year period, ending in December 2020 with reference to five stages of innovation.

EDC-5 Innovation Initiatives and NJ’s Baseline and Goals, 2019-2020

EDC-5 Initiative Baseline: January 2019 Goal: December 2020 Comments
Advanced Geotechnical Exploration Methods Demonstration Institutionalized With proposed activities expect to move it forward to institutionalized
Collaborative Hydraulics: Advancing to the Next Generation of Engineering (CHANGE) Demonstration Demonstration EDC-4 carryover
Reducing Rural Roadway Departures Development Demonstration New initiative under EDC-5
Project Bundling Institutionalized Institutionalized Part of NJDOT toolbox
Safe Transportation for Every Pedestrian (STEP) Assessment Institutionalized EDC-4 carryover
Use of Crowdsourcing to Advance Operations Institutionalized Institutionalized Part of NJDOT toolbox
Unmanned Aerial Systems (UAS) Assessment Institutionalized NJDOT has been a national leader with many advancements planned
Value Capture Not implementing Not implementing Not formally advanced by STIC
Virtual Public Involvement Not implementing Not implementing Not formally advanced by STIC. Agencies may be making use of this initiative.
Notes: Not Implementing: State is not currently using the innovation anywhere in the state; Development: State is collecting guidance and best practices and building support with stakeholders and partners and developing an implementation process; Demonstration: The State is piloting and testing the innovation; Assessment: The State is assessing the performance of and process for carrying out the innovation and making adjustments to prepare for full deployment; Institutionalized: The State has adopted the innovation as a standard process or practice and uses it regularly on projects.

Presentations from the three Core Innovation Area (CIA) Teams -- Safety, Infrastructure Preservation, and Mobility and Operations -- highlighted what has already been accomplished (in prior rounds of EDC Rounds 1 through 4) and further described how NJDOT plans to accomplish the goals for EDC-5 Initiatives.

Participants were informed about the availability of innovative funding programs through FHWA's Center for  Accelerating Innovative Programs to advance EDC-5 Initiatives and what New Jersey projects have already been funded through STIC Incentive Funding and the Accelerated Innovation Deployment Grant Programs. The meeting concluded with a roundtable discussion of the topics covered.

NJDOT will host the national STIC meeting on April 11, 2019.
Forthcoming NJ STIC meetings are scheduled for: May 7, August 8, and November 19, 2019.

Presentation slides:

Introduction and FHWA Update

CIA Team Presentation: Safety

CIA Team Presentation: Mobility and Ops

CIA Team Presentation: Infrastructure Preservation

Basic STIC Overview

Roundtable Discussion, Reminders, and Thank Yous

PMGA Divisions Take Lead on Extreme Weather, Climate Risks, and Asset Management

Introduction

In the summer of 2017, the Federal Highway Administration (FHWA), through a competitive application process, selected NJDOT as one of six (6) state DOTs to participate in a pilot program focused on extreme weather, climate risks and asset management. Each state is to prepare a case study that demonstrates how extreme weather and climate risks are integrated into asset management. FHWA intends to use the results of this effort to develop guidance materials to assist State DOTs in integrating extreme weather and climate risk into asset management practices, specifically in life cycle planning. Planning, Multimodal and Grant Administration’s (PMGA) Divisions of Environmental Resources and Statewide Planning have combined resources to undertake this endeavor that began in October 2017 and is to be completed by February 2019.

Extreme Weather Considerations Vary by State

The six (6) states selected for the Pilot program are Arizona, Kentucky, Massachusetts, Maryland, Texas and New Jersey, giving a diverse geographic perspective. Extreme weather involves different stressors dependent upon location. Whereas riverine flooding associated with heavy precipitation is the “extreme weather” condition that New Jersey and Texas have focused on, Maryland has focused on sea level rise and coastal flooding. Kentucky is focusing on both riverine flooding and other secondary extreme weather hazards from excessive rain such as landslides and sinkholes. Arizona has indicated that they often experience extreme weather in the form of excessive heat, wildfires and dust storms, as well as flash flooding from excessive rain. Finally, Massachusetts, also concerned with riverine flooding, is pursuing the development of a “stream power” tool to assist in assessing extreme weather impacts to their bridges and culverts.

New Jersey’s Approach

Case Study Area (Photo Credit: PMGA)

Originally selecting culverts as the “asset class” to investigate impacts of extreme weather, the New Jersey study has refocused more on identifying the root causes of flooding in specific areas to target cost-effective risk management and mitigation strategies. Using the Departments’ Drainage Management System (DMS) as the primary tool for identifying vulnerable areas subject to road closures due to severe precipitation such as flooding and/or icing, the study team has focused on two locations:

  • Portions of the I-80 corridor, milepost 56.43 – 58.22, ranked # 1 in 2016 DMS.
  • The intersecting Route 23 corridor milepost 4.00 – 7.00, ranked 14th on the 2016 DMS.

Culverts within these limits were identified as well as drainage systems, roadway conditions, topography, flood elevation mapping, and other pertinent data to fully understand the root causes of flooding at these vulnerable areas, and to see how projected climate changes could affect them. Once root causes are identified, then appropriate mitigation strategies can be developed to maintain a state of good repair in extreme weather conditions as best possible.

Communications: Key to Success

The ongoing study has seen early success by engaging internal and external stakeholders; promoting the need and value of cross communication among asset managers, engineers, planners, environmental and maintenance staff. Input from the “owners” of the Drainage Management System, Maintenance Management System, GIS, as well as designers for active projects in the study area from CPM all played key roles in providing critical information, assisting in developing findings for this effort. Maintenance crews have provided real time information related to recent extreme weather events, describing activities needed to further resiliency efforts in the study corridors. Finally, collaboration with NJTPA’s Passaic River Basin Resilience study has resulted in the sharing of critical flooding and climate forecasts to further assist in developing our Pilot Study. Together, the ongoing cross-communication has been the most valuable tool in developing this study, and has laid the groundwork for ongoing discussions on the subject of extreme weather, asset management, and transportation resilience.

Project Overview: Framework (Photo Credit: PMGA)

Early Findings

Addressing extreme weather and asset management cannot be handled in a broad sense as each asset has its own uniqueness in determining its sensitivity to extreme weather. Also, not all assets are vulnerable to projected climate forecasts. To truly address asset management and extreme weather, appropriate tools need to be developed, preferably in GIS format, to fully identify all assets that are vulnerable to extreme weather (excessive precipitation), then determine what mitigation strategies are needed to enable these assets to be resilient and maintain a state of good repair for New Jersey’s vast transportation network. Final recommendations on how to address extreme weather considerations in asset management will be a part of the final study and will serve as a starting point to address resiliency in the Department’s practices.

Contributed by Elkins Green

Featured image (top) is case study area #1: I-80 between M.P. 56.43 and M.P. 58.22. Photo Credit: NJDOT Aeronautics UAS Photo

This article first appeared in the December 2018 SCOOP, the employee newsletter of Planning, Multimodal and Grant Administration, “PMGA Divisions take lead on Extreme Weather, Climate Risks, and Asset Management: Quest for Resiliency.