Q&A: Update on EPIC2 in New Jersey

In early 2024, we spoke with Jess Mendenhall and Samer Rabie from the New Jersey Department of Transportation (NJDOT) about the Enhancing Performance with Internally Cured Concrete (EPIC2) initiative, part of the Every Day Counts (EDC-7) program. They explained the benefits of internal curing, its methods, and its potential for New Jersey. At that time, NJDOT had identified eight bridges as candidates for a pilot project using internally cured High Performance Concrete (HPC) bridge decks, but had not yet secured approval or funding.

That changed in October 2024 when NJDOT initiated its first pilot project—an internally cured HPC bridge deck on the North Munn Avenue bridge over Route 280 in East Orange. This milestone marks a significant step in advancing the department’s efforts.

Additionally, NJDOT secured a $125,000 STIC Incentive Program grant to support further implementation. The funding will cover the purchase of testing equipment and construction materials, staff training on the new equipment, and third-party lab assistance for concrete sampling and testing during construction. To build on this momentum, NJDOT plans to continue collaborating with concrete suppliers, acquire additional testing equipment, and update High-Performance Internal Curing (HPIC) specifications.

With these developments underway, we’re reconnecting with NJDOT for an update on the department’s ongoing EPIC2 projects and its future plans.


Q. Can you provide a brief description of the EPIC2 Initiative, and how internally curing concrete can benefit construction projects?

The difference between conventional and internal curing

A. The EPIC2 initiative, part of the Federal Highway Administration’s (FHWA) EDC-7 innovations, focuses on Internally Cured Concrete (ICC), a proven yet underutilized technique that significantly enhances concrete durability by addressing shrinkage cracking, especially in mixes with a low water-to-cement ratio. Internal curing involves providing water from within the concrete itself, utilizing pre-wetted lightweight fine aggregates (LWFA) to supply moisture during the curing process. This approach is particularly beneficial for low permeability concrete mixes, where traditional external curing methods are less effective.

ICC offers numerous advantages for construction projects. It reduces the likelihood of shrinkage cracking, both autogenous and plastic, thereby decreasing the need for rehabilitation. Furthermore, it enhances the hydration of cement and the reaction of supplementary cementitious materials (SCMs), resulting in reduced porosity and improved durability. This method also allows for the incorporation of natural and recycled SCMs without compromising performance.

Our Bureau of Research, Innovation, and Information Transfer (BRIIT) is actively investigating internal curing in collaboration with Rutgers University, ensuring that we remain at the forefront of this innovation.

Q. At the December 2024 NJ STIC meeting, the Infrastructure Preservation CIA team mentioned that NJDOT has secured a $125,000 STIC Incentive Program grant for the EPIC2 initiative. How will the grant help NJDOT advance its goals for internally cured concrete?

A. The grant will enable the acquisition of centrifuge apparatuses and auxiliary equipment for the Bureau of Materials and the three construction regions. This equipment will allow NJDOT inspectors to conduct more accurate tests for determining moisture content in pre-wetted lightweight aggregations than our currently used paper towel method, which is crucial for producing high-quality ICC. The grant will also facilitate the training of NJDOT personnel to effectively use the centrifuge apparatus. During the transition period, NJDOT will conduct testing using both the centrifuge and paper towel method, ensuring a smooth adoption as inspectors become proficient with the new equipment.

Additionally, the grant will support the development of specifications, create training opportunities, and enable the preparation of lessons-learned reports during the assessment phase. These efforts will contribute to refining our processes and enhancing the overall quality of our specifications and implementation plan.

Q. Can you go into more detail describing the centrifuge apparatus and how it will provide more accurate measures for determining moisture content?

Centrifuge Apparatus

A. The current test we use, implemented and standardized by the New York State Department of Transportation (NYSDOT), is called the paper towel method ASTM C1761. In this method we take a representative sample of the pre-wetted aggregate, take the initial weight, and lay it out in a pan to extract the surface moisture using industrial-grade paper towels until the paper towels come out dry. Then we take the weight again to determine the surface moisture. Lastly, we oven dry the sample and weigh it again to find the absorbed moisture.

The centrifuge can determine the moisture of an aggregate in a single device by spinning the sample until all the moisture is extracted. Research studies comparing the paper towel method and the centrifuge have found that the centrifuge produces more accurate results with a lower margin of error at a significantly faster rate.

Q. Can you describe the pilot project for an internally cured High Performance Concrete (HPC) bridge deck at North Munn Avenue over Route 280 in East Orange? What steps will be involved in completing the project?

A. Our first pilot project, the superstructure replacement in East Orange, is underway with construction starting in March 2025 and we have several more projects in the pipeline. To ensure a cohesive approach, we started the pilot by organizing a coordination meeting involving the Bridge, Construction, Materials, and Project Management divisions. This meeting served to introduce the concept of internal curing and outline our implementation strategy. Concurrently, we engaged with concrete plants near the project sites and LWFA material suppliers to ensure their readiness. We then circulated draft specifications for internal review, and obtained feedback from NYSDOT, the individual project designers, and the FHWA Resource Center’s EPIC2 team.

A key component of introducing ICC into a pilot project involves incorporating project-specific special provisions. Our pilots use a performance specification similar to our current HPC specification, where the contractor submits a mix design and performs the necessary off-site laboratory testing, such as for compressive strength and durability properties. The contractor is permitted to develop a new ICC mix or convert an existing mix using ASTM C1761 procedures. If the mix meets the specification limitations and verification testing requirements, it will be accepted by NJDOT. The verification and acceptance testing align closely with current HPC specifications, with some exceptions to accommodate the unique aspects of internal curing.

Q. Will the pilot project require specialized training for NJDOT staff or contractors?

A. The production process for High Performance Internally Cured Concrete (HPIC) closely resembles that of conventional High Performance Concrete (HPC), with the key difference being the inclusion of LWFA. This aggregate requires pre-soaking and precise moisture adjustments to achieve optimal performance. Despite these modifications, HPIC mixtures maintain similar concrete properties and offer constructability comparable to HPC.

Workers installing an HPIC overlay

For our pilot projects, conducting a trial batch and test slab is crucial. This phase allows the concrete supplier and contractor to become familiar with the handling of LWFA, as well as the batching and placement of the HPIC mix. The trial batch and test slab are meticulously designed to replicate the conditions and processes of actual slab production.

Most of the work involved in producing HPIC happens at the batch plant, where the adjustments for LWFA take place. As a result, contractors and inspectors casting the deck are unlikely to notice substantial differences from standard HPC procedures.

Q. What key factors are considered when identifying candidate bridges for future projects?

A. We carefully evaluate active Capital Program Management projects to identify suitable candidates. Our selection criteria focus on projects with a limited scope in the Concept Development or Final Design phase, specifically targeting deck and superstructure replacements. We prioritize projects where Final Design Submissions have not yet been prepared and where timelines allow for integrating special provisions. Projects with cast-in-place or conventional decks are considered, while pre-cast decks are excluded to reduce design and constructability risks. We aim to select non-complex or major structures, targeting the implementation of HPIC on 10–15 bridge decks before institutionalization.

Q. In what ways do you think the pilot projects and new STIC funding could affect NJDOT policy going forward?

A. Our goal is to address the cracking we routinely observe in new HPC bridge decks by refining the HPC mix design in our standard specification to include internally cured provisions. If the pilot project is successful, we will collaborate with the Bureau of Materials to determine the next steps for advancing HPIC specifications for NJDOT projects. Ultimately, we aim to enhance the durability of bridge decks and other concrete components in New Jersey by incorporating new HPIC specifications.

As of 2024, only 104 ICC bridge decks are in service in the United States

Q. What do you think are the principal barriers, if any, to the adoption of internally cured concrete on bridge projects as the new standard?

A. Lack of Awareness and Education: Many engineers and decision-makers may not fully understand the benefits and techniques of ICC. This knowledge gap, coupled with concerns about potential impacts on construction schedules and quality, can lead to hesitation in adopting new methods.

Initial Cost Concerns: While ICC can lower long-term costs by improving durability and reducing maintenance, the higher upfront expenses, such as LWFA and the need for additional storage bins at batch plants—may discourage early adoption.

Technical Challenges: Precise moisture control and mix design adjustments can be technically challenging and require specialized training, which could pose a barrier for some organizations transitioning to ICC.

Supply Chain Limitations: The availability of materials like LWFA and the need for pre-soaking facilities may be limited, especially in certain regions.

Economies of Scale and Standardization: As seen with NJDOT’s HPC implementation in the early 2000s, achieving consistent production of specialty concretes is critical for efficiency. If pilot projects succeed, NJDOT plans to standardize ICC mixes for all bridge decks, which will require larger production quantities. This increased demand could drive greater industry investment in materials and production infrastructure, further supporting widespread adoption.

Q. What are the current approaches you are using to address the lack of awareness of the benefits and techniques of ICC?

NJDOT attended a peer exchange event in Albany, NY, on the EPIC2 Initiative.

A. We have engaged in extensive internal discussions with construction material staff, project management, and decision-makers to familiarize them with ICC and FHWA recommendations. We have also coordinated with concrete suppliers through the Utility and Transportation Contactors Association to gauge project feasibility. Additionally, in collaboration with Rutgers, we distributed questionnaires to multiple concrete plants, our consultants, and designers to gather insights and address concerns. Our primary approach has been open communication with all key stakeholders to ensure a well-informed transition to ICC.

Q. What are the current economic benefits of ICC given the barriers you described previously, and how do you expect this to change in the future?

A. Currently, with data from only one project, ICC carries higher initial costs due to factors like contractor-perceived risk and limited material availability. However, we are seeing substantial fine hairline cracking in conventional HPC decks, raising concerns about long-term durability. Addressing these cracks with sealers adds significant costs, and without frequent upkeep, leads to deterioration overtime. While HPC may have lower upfront costs, ICC has the potential to last much longer and require less maintenance, ultimately reducing lifecycle expenses.

Our implementation plan includes using ICC on at least 10 to 15 bridge decks, signaling to batch plants that we are serious about ICC. Once suppliers recognize this increased demand, they can expand production, improving efficiency and cost-effectiveness. This mirrors what happened when HPC was introduced around 25 years ago—initial costs were higher, but as adoption grew, economies of scale helped bring costs down. We anticipate a similar trend with ICC as it becomes more widely implemented.

Q. Are there any other recent developments or lessons related to EPIC2 that you would like to highlight?

Twin bridges that will be studied to compare performance between HPC and HPIC

A. As we are still in the early stages of implementing the EPIC2 initiative, we eagerly anticipate the upcoming deck castings, which will undoubtedly provide valuable lessons and insights. One particularly noteworthy upcoming project involves a pair of twin bridges, where we will use traditional HPC for one bridge deck as a control and HPIC for the other. After the deck placement, both bridges will undergo thorough surveys to assess early-age shrinkage, allowing us to directly compare performance and further refine our approach.

Resources

Extend Service Life of Concrete Bridge Decks with Internal Curing. 2023. https://rip.trb.org/View/2292366

Federal Highway Administration. 2023 Internally Curing Concrete Produces EPIC2 Results. https://www.fhwa.dot.gov/innovation/innovator/issue98/page_01.html

Federal Highway Administration. 2023. Enhancing Performance with Internally Cured Concrete. https://www.fhwa.dot.gov/innovation/everydaycounts/edc_7/docs/EDC-7FactsheetEPIC2.pdf

Federal Highway Administration. (2018, June). Concrete Clips: Internal Curing. https://www.youtube.com/watch?v=b6WREFmacaM

New York State DOT Standard Specifications (2021). Standard Specifications. New York State DOT. https://www.dot.ny.gov/main/business-center/engineering/specifications/busi-e-standards-usc/usc-repository/2021_9_specs_usc_vol2.pdf

National Concrete Pavement Technology Center Internal Curing Resources. (2022). Internal Curing. Iowa State University. https://cptechcenter.org/internal-curing/

Internal Curing. (2020). Oregon State University. https://engineering.oregonstate.edu/CCE/research/asphalt-materials-performance-lab/materials-research-concrete-materials/Internal-Curing

Pacheco, Jose. (2021, October). USDOT Workshop Report, Bureau of Transportation Statistics. Wisconsin Department of Transportation. https://rosap.ntl.bts.gov/view/dot/62607

Q&A: What’s EPIC2 about Internally Cured Concrete? (2024) https://www.njdottechtransfer.net/2024/02/07/internally-cured-concrete-qa-2/

Wang, Xuhao. (2019). Extended Life Concrete Bridge Decks Utilizing Internal Curing to Reduce Cracking. Ohio Department of Transportation. https://rosap.ntl.bts.gov/view/dot/62339

Weiss, Joseph. (2015, July). Internal Curing Technical Brief. Federal Highway Administration. https://www.fhwa.dot.gov/pavement/concrete/pubs/hif16006.pdf

NJDOT Tech Talk! Webinar – Research Showcase: Lunchtime Edition 2025

Join us for the upcoming NJDOT Research Showcase Lunchtime Edition webinar!

Wednesday, May 14, 2025
12:00PM – 1:30PM


This Lunchtime Tech Talk! webinar will feature four research studies that were not shared at the 26th Annual Research Showcase held October 2024.

  • Assessing the Accuracy of Lidar for Traffic Data Collection in Various Weather Conditions
    Abolfazl Afshari, New Jersey Institute of Technology
  • Traffic Crash Severity Prediction Using Synthesized Crash Description Narratives and Large Language Model (LLM)
    Branislav Dimitrijevic, PhD, New Jersey Institute of Technology
  • Forensic Investigation of Bridge Backwall Structure Using Ultrasonic and GPR Techniques
    Manuel Celaya, PhD, PE, Advance Infrastructure Design, Inc.
  • Traffic Signal Phase and Timing Detection from Roadside CCTV Traffic Videos Based on Deep Learning Computer Vision Methods
    Bowen Geng, Rutgers Center for Advance Infrastructure and Transportation

The NJDOT Research Showcase provides an opportunity for the New Jersey transportation community to explore a wide range of academic research initiatives and technology transfer activities conducted by the state’s higher education partners and their associates. The NJDOT Research Showcase Lunchtime Edition offers an additional forum to highlight the ongoing work and value of research supported through the NJDOT Research Program.

The event is free, but registration is required to receive the URL link to the webinar. PE credits are available, but you must be registered for the event.

Did You Know? TRID Searches, Lighting, and Recent NJ Research

The NJDOT Technology Transfer Research Library offers valuable resources, including the TRID database, which helps researchers access transportation publications by topic, keyword, or geographical area. TRID can serve as a valuable tool to expand knowledge on innovations in topics such as lighting, or to learn more about local research.


The NJDOT Technology Transfer Research Library page features a “Did You Know” page that provides key information about the library, transportation research resources, as well as newly released publications available through AASHTO and the ASTM COMPASS Portal. Additionally, the site hosts a TRID Searches page, offering a list of recent publications indexed in the Transport Research International Documentation (TRID) database, categorized into 37 subject areas. The TRID database features specialized search options allowing researchers and other interested parties to locate publications using geographical, subject area, and key term identifiers.

An emergency response truck that has a detachable and extendable lighting tower equipped on the back of the vehicle.
Example of the tower lighting equipped on NJDOT emergency response vehicles. Courtesy of NJDOT

NJDOT frequently advances innovative transportation projects across various research topics, including lighting initiatives under the FHWA’s Every Day Counts (EDC-7) program. In one example, NJDOT collaborated with Rutgers-VTC, and Rowan University to produce a pedestrian lighting draft report, as part of the Nighttime Visibility for Safety initiative. The research team determined optimal lighting levels and designed pedestrian lighting infrastructure to improve safety. The researchers presented project findings at the 2024 NJDOT Research Showcase, with a full report expected in 2025. Additionally, NJDOT advanced innovations in nighttime traffic incident management through the procurement of lighting towers and LED flares for emergency response vehicles, as part of the EDC-7 Next-Generation Traffic Incident Management (NextGen TIM): Technology for Saving Lives initiative.

As NJDOT advances its lighting innovations, the TRID database can serve as a valuable resource to explore similar lighting-related research and initiatives both nationally and within New Jersey. A search of the TRID database using the keyword “lighting” uncovers hundreds of recent transportation studies that focus on or incorporate lighting. One such study explored ways to enhance the safety of winter road maintenance vehicles, such as snowplows, by identifying the most effective vehicle lighting to improve reaction times. Another examined racial and poverty-level disparities in pedestrian nighttime crashes, highlighting the increased crash risk in low-income and minority communities due to inadequate lighting and pedestrian infrastructure.

A work vehicle installing steel electrodes to a length of road in New Jersey.
Installation of steel electrodes in the asphalt assessment. Marath. A., A. Saidi, A. Ali, and Y. Mehta. (2024)

In addition to researching specific topics, the TRID database can be used to locate publications by geographical area. Using “New Jersey ” as a keyword uncovers studies that focus on local transportation research and innovations. For instance, one study evaluated the performance of conductive asphalt pavements in the state, finding that a high-performance thin overlay (HPTO) asphalt mixture with graphite and carbon fibers offered the best cracking resistance. Another study, sponsored by NJ TRANSIT, examined factors contributing to the decline in bus ridership, identifying major contributors like infrequent service and a lack of direct connections to key destinations.


TRID Database

Lighting-Based Research

Lighting-based research can be found on the TRB TRID database. Below are several recent national transportation research articles on lighting:

Belloni, E., C. Buratti, L. Lunghi and L. Martirano. (2024). A new street lighting control algorithm based on forecasted traffic data for electricity consumption reduction. Lighting Research and Technology. Vol. 56. https://trid.trb.org/View/2248974

Dubey, S., A. Bailey, and J. Lee. (2025). Women’s perceived safety in public places and public transport: A narrative review of contributing factors and measurement methods. Cities. Vol. 156. https://trid.trb.org/View/2447605

Kidd, D., L. Riexinger, and D. Perez-Repela. (2024). Pedestrian automatic emergency breaking responses to a stationary or crossing adult mannequin during the day and night. Traffic Injury Prevention. Vol. 25. https://trid.trb.org/View/2452794

Li. H., L. Wang, and M. Yang. (2025). Collaborative effects of vehicle speed and illumination gradient at highway intersections exits on drivers’ stress capacity. Accident Analysis & Prevention. Vol. 209. https://trid.trb.org/View/2447380

Mwende, S., V. Kwigizile, and J. Oh. (2024). Investigating Racial and Poverty-Level Disparities Associated with Pedestrian Nighttime Crashes. Transportation Research Record: Journal of the Transportation Research Board. Vol. 2678. https://trid.trb.org/View/2361845

Ouyang, H., P. Liu and Y. Han. (2025). Exploring Factors Contributing to Pedestrian Injury Severity in Pedestrian-Vehicle Crashes: An Integrated XGBoost-SHAP, Latent Cluster, and Mixed Logit Approach. Journal of Transportation Engineering, Part A: Systems. Vol. 151. https://trid.trb.org/View/2479744

Rangaswamy, R., N. Alnawmasi, and Z. Wang. (2024). Exploring contributing factors to improper driving actions in single-vehicle work zone crashes.: A mixed logit analysis considering heterogeneity in means and variances, and temporal stability. Journal of Transportation Safety & Security. Vol. 16. https://trid.trb.org/View/2399835

Van Beek, A., Y. Fang and D. Duives. (2024). Studying the impact of lighting on the pedestrian route choice using Virtual Reality. Safety Science. Vol. 174. https://trid.trb.org/View/2345069

Vidal-Tortosa, E. and R. Lovelace. (2024). Road lighting and cycling: A review of the academic literature and policy guidelines. Journal of Cycling and Micromobility Research. Vol. 2. https://trid.trb.org/View/2334660

Wong, A. D. Sharma, F. Momeni, and S. Wong. (2025). Naturalistic Experiment for Surface Transportation: A Study of Snowplow Lighting Under Winter Conditions. Journal of Transportation Engineering, Part A: Systems. Vol. 151. https://trid.trb.org/View/2464993

New Jersey-Based Research

New Jersey-based research can also available through the TRB TRID database. Below are several recent articles on New Jersey transportation research:

Assaad, H., M. Mohammadi, and G. Assaf. (2024). Determining Critical Cascading Effects of Flooding Events on Transportation Infrastructure Using Data Mining Algorithms. Journal of Infrastructure Systems. Vol. 30. https://trid.trb.org/View/2373908

Devajyoti, D., and C. Wang. (2024). An investigation into the potential use of information and communication technologies by trip-deprived older adults in New Jersey. Transportation Research Part A: Policy and Practice. Vol. 188. https://trid.trb.org/View/2415346

Devajyoti, D., and Z. Liu. (2024). Who stopped riding buses and what would motivate them to return? A New Jersey case study. Case Studies on Transport Policy. Vol. 15. https://trid.trb.org/View/2343481

Hasan, A.S., M. Jalayer, S. Das and M. Bin Kabir. (2024). Application of machine learning models and SHAP to examine crashes involving young drivers in New Jersey. International Journal of Transportation Science and Technology, Vol. 14. https://trid.trb.org/View/2162338

Keenan, K. (2024). The transportation policy elite and their ladder of citizen participation: Problems and prospects around communication methods in New Jersey. Cities. Vol. 145. https://trid.trb.org/View/2309380

Khameneh, R., K. Barker, and J. Ramirez-Marquez. (2025). A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems. Reliability Engineering & System Safety. Vol. 255. https://trid.trb.org/View/2465146

Marath. A., A. Saidi, A. Ali, and Y. Mehta. (2024). Assessment of mechanical performance of electrically conductive asphalt pavements using accelerated pavement testing. International Journal of Pavement Engineering. Vol. 25. https://trid.trb.org/View/2487585

Najafi, A., Z. Amir, B. Salman, P. Sanaei, E. Lojano-Quispe, A. Maher, and R. Schaefer. (2024). A Digital Twin Framework for Bridges. ASCE International Conference on Computing in Civil Engineering 2023, American Society of Civil Engineers, pp 433-441. https://trid.trb.org/view/2329319

Patel, D., R. Alfaris, and M. Jalayer. (2024). Assessing the effectiveness of autism spectrum disorder signs: A case study in New Jersey. Transportation Research Part F: Traffic Psychology and Behaviour. Vol. 100. https://trid.trb.org/View/2293015

Zaman, A., Z. Huang, W. Li, H. Qin, D. Kang, and X. Liu. (2024). Development of Railroad Trespassing Database Using Artificial Intelligence. Rutgers University, New Brunswick, Federal Railroad Administration, 80p. https://trid.trb.org/view/2341095 

STIC Incentive Program Funds Are Available


Watch the video to learn more about NJ STIC Incentive Grants.

The Federal Highway Administration (FHWA) offers STIC Incentive Funding, as well as technical assistance, to support the standardization and advancement of innovative practices. The NJ STIC receives $125,000 each year and state and local public agencies in transportation are eligible to apply.

To be eligible, a project or activity must have a statewide impact in fostering a culture for innovation or in standardizing an innovative practice, and must align with FHWA’s Technology Innovation Deployment Program goals.  The NJ STIC will prioritize funding projects and activities that advance innovations such as the Every Day Counts (EDC) innovations that are being promoted by FHWA.  

NJ STIC solicits ideas for funding of proposed innovation projects each federal fiscal year. Selected projects are then submitted to the Federal Highway Administration (FHWA) for approval. The request submittal does not guarantee funding nor award of funding.

The NJDOT Bureau of Research, Innovation and Information Transfer (BRIIT) is ready to answer your questions and assist applicants. For more information on eligibility, proposal requirements, past funded projects, and more, please visit: the New Jersey STIC Incentive Fund Requests webpage.


NJDOT Collaboration on UHPC Overlay TechNote Report from FHWA

Click on the image to read the report.

At the NJ STIC 2024 3rd Triannual Meeting on December 2024, the Infrastructure Preservation CIA Team announced the publication of an FHWA TechNotes reports, which drew lessons from NJDOT, among other transportation agencies and stakeholders. The report, Experiences from Early Implementation of UHPC Overlays, summarized the experiences of five different entities with their recent installations of UHPC overlays.

FHWA interviewed Samer Rabie and Jess Mendenhall from NJDOT, as well as individuals from the Delaware River & Bay Authority, Federal Lands Highway, the Iowa Department of Transportation, and Buchanan County in Iowa, to discuss the lessons learned and future recommendations from their previous experiences.

According to the report, ultra-high performance concrete (UHPC), part of the sixth round of the Every Day Counts (EDC-6) initiative, offers many qualities beneficial to overlay applications, including very low permeability, good freeze-thaw resistance, good abrasion resistance, high strength and stiffness, and good bond strength. Despite higher initial costs during the construction process, UHPC factors such as superior durability and improved life-cycle cost can also reduce costs over time compared to traditional methods.

UHPC Overlay surface after grinding and grooving.

The implementation of UHPC overlays differs from traditional overlays, requiring additional planning, expertise, and methods, especially for larger projects. The feedback provided by the transportation agencies on UHPC overlays in the FHWA report includes information on project selection, project planning, surface preparation, UHPC mixture design, UHPC mixing, UHPC placement, constructions joints, UHPC finishing, and UHPC removal and repair.

Read the report here.

In addition to the FHWA TechNotes report, NJDOT has previously highlighted UHPC research projects from New Jersey’s Institutes of Higher Education partners, and the agency’s own experiences with implementing UHPC. Some examples include presentations at the annual NJDOT Research Showcase, Q&A interviews with NJDOT’s SMEs focused on the innovation’s implementation, and previous projects with FHWA. Most recently, NJDOT has been a participating funding agency for the Structural Behavior of Ultra High Performance Concrete project, led by FHWA, as part of the Transportation Pooled Fund (TPF) program. To learn more about UHPC research and implementation in New Jersey, read through the resources section below.

Resources:

FHWA. Experiences from Early Implementation of UHPC Overlays. (2025). [Report]

NJDOT’s Involvement with Transportation Pooled Fund Program. (2025). [Article]

Ultra High-Performance Concrete (UHPC) Applications in New Jersey – An Update. (2024). [Article].

Advanced Reinforced Concrete Materials for Transportation Infrastructure. (2023). [Webinar].

Bandelt, M., Adams, M., Wang, H., Najm, H., and Bechtel A., Shirkorshidi, S., Jin, F. (2023). Advanced Reinforced Concrete Materials for Transportation Infrastructure. (2023). [Final Report].

Bandelt, M., Adams, M., Wang, H., Najm, H., and Bechtel A., Shirkorshidi, S., Jin, F. Advanced Reinforced Concrete Materials for Transportation Infrastructure. (2023). [Technical Brief].

Presentation: Design, Construction, and Evaluation of UHPC Bridge Deck Overlays for NJDOT. (2022).  [STIC Presentation]

Stronger, More Resilient Bridges: Ultra High-Performance Concrete (UHPC) Applications in New Jersey. (2021). [Article]

Ultra-High Performance Concrete for Bridge Preservation and Repair: NJDOT Example Featured. (2021).  [Article]

NJDOT Research Showcase Posters and Presentations

Ghahsareh, F. Life-Cycle Assessment of Ultra-High Performance Concrete (UHPC) Beams Using Advanced Monitoring Technologies. (2024).  [Presentation]. {Video}

Gucunski, N. Evaluation of Performance of Bridge Deck with UHPC and LMC Overlays through Accelerated Structural Testing. (2024). [Presentation]. {Video}

Shirkhorshidi, S., Bandelt, M., Adams, M., and Reif J. Corrosion Performance of Ultra-High Performance Concrete in Uncracked and Cracked Beams. (2022). [Presentation]. {Video}

Meng, W. Design and Performance of Cost-Effective Ultra-High Performance Concrete (UHPC) for Transportation Infrastructure. (2018). [Presentation]

Interview with 2024 Research Showcase “Best Poster Award” Winner

We had the opportunity to speak with Swathi Malluru, a PhD candidate at Rowan University and recipient of the 2024 NJDOT Research Showcase Best Poster Award. Her research focuses on sustainable pavement rehabilitation, including the Full-Depth Reclamation (FDR) and Cold In-Place Recycling (CIR) processes that were the subject of the performance evaluation recognized with the Best Poster Award. In this interview, Ms. Malluru discusses her journey in transportation engineering, from her background in sustainable materials to her work optimizing stabilizers for FDR and CIR. She hopes that her research can provide economic and environmental benefits and shares how it could shape future NJDOT policies.


Q. Congratulations on receiving the Best Poster Award at the 2024 NJDOT Research Showcase. Could you tell us about your prior educational and research experience, and how you came to be a PhD student at Rowan University?

A. First of all, I would like to thank you for your time. I pursued my master’s in Transportation Engineering from the Indian Institute of Technology. At the university, I learned about pavement materials, specifically pavement rehabilitation techniques and pavement design analysis. Then, I worked on a steel slag aggregates project. In this project, I completely replaced the conventional natural aggregates with steel slag aggregates in hot mix asphalt mixture and evaluated the performance to understand if slag could function as an alternative to the conventional natural aggregates. This motivated me to do further work in sustainability and that’s how my research journey started.

What drew me to Rowan University was the Center for Research and Education in Advanced Transportation Engineering Systems (CREATES), which deals with diverse research projects, and has a lot of facilities for conducting research on pavement materials. CREATES provides facilities where we can conduct our laboratory tests and evaluate the performance of various mixes. In the laboratory, we do everything in controlled conditions that may not exactly simulate field conditions but provide a good opportunity for a researcher to understand the behavior of a particular material and mix under different circumstances. CREATES also facilitates test sections and conducts Accelerated Pavement Testing (APT) using the Heavy Vehicle Simulator (HVS) to evaluate the field performance of the asphalt mixtures.

Q. What sparked your interest in sustainability related to pavement materials and rehabilitation?

A. I come from an industry background. After my master’s, I worked in construction for Larsen & Toubro and later as a highway designer for Jacobs. I worked on the geometric design of Texas Department of Transportation (TxDOT) projects. Based on my experience, I found that, especially in developed countries, roads have mostly been constructed. The future is in widening, rehabilitation, and maintenance of the existing roads. Additionally, we see that transportation is the largest global contributor to carbon emissions. These factors convinced me to focus on researching environmentally friendly and cost-effective pavement materials for sustainable development.

Q. The research in your poster focused on Full Depth Reclamation (FDR) and Cold In-Place Recycling (CIR). Can you describe some of the environmental or economic benefits that these processes provide?

Asphalt Milling Machine.

A. This project was funded by NJDOT Pavement Support Program (PSP) and led by Dr. Ahmed Saidi from CREATES, Rowan University. Cold In Place Recycling and Full Depth Reclamation are two rehabilitation techniques of deteriorated asphalt pavements. In the conventional process, whenever the pavement is highly distressed, we completely remove the materials and lay a new pavement stretch in that particular location. This process utilizes a Hot Mix Asphalt (HMA) mixture that requires asphalt, high mixing temperatures and large amounts of energy consumption, producing emissions. Production of HMA also involves a lot of volatile organic compounds, which can significantly impact the environment.

By replacing the process with a FDR or CIR, we can conserve the materials and reduce emissions. In FDR, the existing pavement is milled up to the unbound soil layers (at a depth up to 14 inches) and then laid into a single layer through pulverization and stabilization with additives. CIR involves reclamation of asphalt layer (at a depth up to 4 inches) and stabilization with additives. In this scenario, we see very little emissions, and it is also very quick. In our few trial stretches, which included some NJDOT projects, we observed that we could save $10,000 to $50,000 per mile. This is a huge achievement in cost savings and time savings, and is environmentally friendly. These are the benefits we get from implementing FDR and CIR.

Q. For the first two tasks in the research project, you conducted a literature review and a survey of different state DOTs. What did you find through these two tasks, and how did it prepare you for the lab tests?

A. We went through the various guidelines of different state DOTs and other state agencies. From this literature review, we observed that early on, state guidelines mentioned only the usage of cement for the FDR. But some states like Pennsylvania and Illinois started implementing the use of bituminous stabilizers to improve the performance of FDR. Through the state DOT literature review and the survey questionnaire, we learned more about the properties of emulsions and cement, the properties of RAP gradation, the types of cement that we have to select, and also how to cure and compact samples. We learned all these aspects of FDR and CIR from the literature review and the survey questionnaires, and then we tried to incorporate all these elements.

Q. You concluded with the research that 5 percent cement, or 3 percent emulsion, 1 percent cement and 3 percent water worked best for FDR, and 2 percent emulsion, or 1.5 percent foamed bitumen for CIR. How many different combinations did you try and how significantly did these combinations outperform the alternatives?

A. Based on the performance criteria from the literature review, we tried to understand what the optimum dosage should be. We considered three different stabilizer material types for FDR: a section with only cement varying from 4 to 5 percent with a 0.5 increment; a mix consisting of emulsion varying from 3 to 5 percent; and foamed bitumen varying from 3 to 5 percent. We decided to utilize these dosages based on the literature review. From the laboratory test, we observed that the 3 percent emulsion gave less rut depth and better fatigue performance compared to alternatives. Similarly, when we added 5 percent cement or 3 percent emulsion, we found it gave an equal performance.

Q. Did you experience any challenges during the lab tests?

A. Based on what we learned in the literature review, we were able to match the results and confirm it. Emulsions, and the inclusion of bituminous additives, can improve the performance of these mixtures. The challenges were during the mixing and compaction, but we managed to rectify those challenges over time.

Q. What additional research do you think should be conducted based on your findings from this project?

A. We have to conduct further work on the impact and performance of FDR and CIR and also evaluate any other alternatives that can be used as stabilizers. Currently, we are proposing FDR and CIR guidelines for minor roads, but maybe, if we try to improve and enhance its performance, we can extend it to the interstate highways and roads of higher priority. That is a major area for future research.

Q. What kind of impact do you hope this research will have on NJDOT construction and design policy moving forward?

A. I hope it helps NJDOT optimize cost savings, reduce labor, and construction time and, especially, aid in NJDOT becoming more environmentally friendly. This will help reduce emissions compared to using the conventional overlay method and help NJDOT achieve its sustainability goals.

Q. Moving toward your personal research, is there any kind of research that you specifically want to focus on going forward, or would it be something similar to this as you progress through your doctoral path?

A. After this, I want to try to conduct a test trial to evaluate the performance of FDR and conduct a life cycle assessment. And try to test the impact of low temperatures on the performance of FDR. Will there be a low temperature cracking effect from freezing? I would also like to work on developing design guidelines for the implementation of FDR and CIR throughout NJDOT.

Q. What are your career goals and aspirations for after you complete your PhD?

A. After my PhD, I would like to work in the industry, so I can implement my research and work to find solutions for major problems.


Join the 2025 Build a Better Mousetrap Competition!

New Jersey’s Build a Better Mousetrap Competition is currently underway!

NJ 2025 Build a Better Mousetrap Competition is underway!

The competition provides a great opportunity to share your ingenious and implemented solutions in transportation with others in New Jersey and across the country. These innovations can range from the development of tools and equipment modifications to the implementation of new processes that increase safety, reduce cost, and improve efficiency of our transportation system.

We are looking for submissions from employees of any local, county or state public agency, including the New Jersey Department of Transportation and NJ TRANSIT that have developed new solutions to problems or found better ways of doing things.

Winners will be chosen in two categories: Operations and Organizational Improvement. This competition is sponsored by the Federal Highway Administration’s Local Technical Assistance Program and Tribal Technical Assistance Program, and local public agency winners will be entered in the annual National LTAP/TTAP Conference.

A state winner in each category will also be selected and presented at the Annual NJDOT Research Showcase later this fall. The deadline for submissions is May 1st, 2025.

2024 Winner: Replacing Inlet Curb Pieces in Existing Concrete Barrier Curb, Bishoy Abdallah, NJDOT

The New Jersey 2024 Build a Better Mousetrap Award was given to Bishoy Abdallah, a Senior Engineer in the Transportation Roadway Design (Group-1) at NJDOT, for his Replacing Inlet Curb Pieces in Existing Concrete Barrier Curb project.

There is still time to share your ingenious solutions! Past examples of NJ’s recognized BABM award winning entries can be found here. More information about how to enter the competition and to download an entry form can be found here.


Call for Ideas for the Eighth Round of Every Day Counts (EDC-8)

Every two years, FHWA works with state transportation departments, local governments, tribes, private industry, and other stakeholders to identify and champion a new collection of innovations that merit accelerated deployment through the Every Day Counts initiative (EDC). In preparation for the next EDC phase, FHWA has announced a Call for Ideas seeking suggestions for market-ready innovations to deploy in 2026 as part of the eighth round of Every Day Counts (EDC-8).

FHWA is interested in submissions for innovations that describe how the innovation will address the following areas:

  1. National Impact: How will it benefit the transportation system nationally?
  2. Game Changing: How is it transformative in making our transportation system adaptable, sustainable, resilient, equitable, and safer for all?
  3. Urgency and Scale: How will it positively impact the environment, safety, congestion, freight movement, construction techniques, contracting methods, project costs, maintenance, preservation, or emergency response?
  4. Locations: Where has the innovation been deployed?

The submission deadline for this Call for Ideas is February 4, 2025. For more information on the Every Day Counts initiative and how to submit suggestions, visit here.

The innovations championed during the seventh round of Every Day Counts include Enhancing Performance with Internally Cured Concrete, Environmental Product Declaration for Sustainable Project Delivery, Integrating GHG Assessment and Reduction Targets in Transportation Planning, NextGen TIM: Technology for Saving Lives, Nighttime Visibility for Safety, and Strategic Workforce Development. To learn more about innovative initiatives promoted in previous rounds of Every Day Counts and the status of their deployment in New Jersey, visit here.

Interview with 2024 Research Showcase “Outstanding University Student in Transportation Research Award” Winner

Traffic safety and mobility, two critical areas in transportation engineering, both require the collection and analysis of large data sets to produce proactive and comprehensive solutions. Transportation engineers have started to increasingly focus on using innovative technologies to efficiently and effectively process this data.

We had the opportunity to speak with Dr. Deep Patel, a former Ph.D. candidate and research fellow at Rowan University, whose work is at the forefront of this mission. Recently, Patel received the NJDOT Outstanding University Student Research Award for his contributions to transportation research. In this interview, Patel shares insights from his research journey, including his work on the Real-Time Traffic Signal Performance Measurement Study and the development and implementation of machine learning tools to predict high-risk intersections. His dedication to improving traffic operations and safety, along with his new industry role as a Traffic Safety and Mobility Specialist, highlights the significant impact of combining academic research with practical industry applications.


Q. Could you tell us about your educational and research experience and how you became a PhD candidate and research fellow at Rowan University?

A. First of all, thank you for your time and for considering me for the opportunity to be interviewed about my recent NJDOT award. I would also like to thank the NJDOT review committee members and my Ph.D. advisor Dr. Mohammad Jalayer, who supported me in receiving this award.

I started my master’s study in 2018 as a civil engineering student without a research focus. Then, during my first semester, I took a course called Transportation Engineering with Dr. Mohammad Jalayer. When he sought traffic counting assistance for a traffic analysis project, I eagerly joined him, becoming his first research student.

Deep Patel conducting roadside research. Courtesy of Deep Patel.

Through that experience, I started thinking about what could streamline the traffic counting process and the various uses for the data we collected. I went on to work on several research projects with Dr. Jalayer, both funded and non-funded, where we had frequent discussions, and I would present my ideas to him. Eventually, he asked me to join him as a researcher and to continue my master’s work with a research focus, which I did for two years. When he suggested I continue my studies to earn a Ph.D., I was initially surprised, but I decided to go for it since I had a lot of ideas for future research projects.

At the end of my master’s study, I began Phase One work for a Real-Time Traffic System Performance Measure Study led by Dr. Peter Jin, Dr. Thomas Brennan, and Dr. Jalayer. This project connected me with a team from Rutgers, TCNJ, and a few professionals from NJDOT and other industry folks. I represented Rowan’s end for this project, where our focus was on understanding the safety aspects including safety parameters and performance and how we could assist NJDOT transform this new technology to help save lives. For the first phase of the project, we worked on understanding the traffic signal system performance measures, and what had been adopted by other DOTs. My experience on this project drove me to pursue more research and to expand my knowledge in traffic safety.

Q. You worked on Phase One through Three of this Real-Time Traffic Signal Performance Measurement Study. What part of this project interested you the most?

A. My main takeaway from this project focused on learning more about how the transportation industry looks towards the research outputs and outcomes from the university teams. It is very interesting to understand how university-based research is being adapted for industry acceptance. Additionally, I learned what problem-solving features the industry looks for from the research component.

From a technical aspect, I learned how New Jersey signals can be enhanced and how we can optimize the performance of these signals and achieve cost savings. Let’s say you have a scenario where there is no vehicle at an intersection; how can we provide recommendations to change the signal to a red light and give the other side of the intersection a green light? So, we gathered several components in terms of mobility, safety, and economic parameters from the study that can help enhance our traffic signals in New Jersey, sharing this information with the NJDOT team.

Figure 1: An Example real-time performance monitoring on County Road 541 and Irwick Road, Burlington County, NJ
Example of real-time performance monitoring on County Road 541 and Irwick Road, Burlington County, NJ

Q. How did you see your role on the research project develop as you moved from the earlier phases to the latest phase?

A. In the first phase, we completed a comprehensive literature review to understand what is happening across the nation, which systems are being adapted, what are the best systems for providing traffic signal safety performance measures, and what are the kind of performance measures that can be adapted in an industry setting. In Phase Two, the team focused on developing mechanisms and performance measures aligned with NJDOT’s existing data, including deploying the Automated Traffic Signal Performance Measures (ATSPM) system to enhance traffic signal monitoring and optimization. To guide these efforts, an adaptability checklist was created to benchmark practices from other states and identify strategies that could be adapted to benefit NJDOT’s operations. Building on this foundation, Phase Three advanced to the demonstration and application of dashboards and performance measures, providing actionable recommendations to NJDOT on enhancing mobility and safety across various regions and corridors. These efforts aimed to save time and lives, while the integration of connected vehicle (CV) technologies remains a key focus for future work, ensuring NJDOT’s leadership in traffic management innovation.

Q. What were the specific corridors that you worked on?

A. We started with seven/eight intersections on U.S. 1. Then, we explored the whole corridor of U.S. 1 as part of Phase Three, and we also brought in Route 18, Route 130, and other intersections during this phase.

Q. Did you discover any particular surprising or noteworthy findings from this research?

A. This was a long project, extending from 2019-2024. As a result, each year we discovered new findings, and new components were often added to the project. For example, we added a CV systems component as part of the Phase Two and Phase Three projects to start planning for the future and understand what kind of data could be received and sent from CV technologies. The main benefit from this project is that it not only established current problem-solving measures but also looked into the future, helping to better understand what’s coming and how we can best face anticipated challenges that we need to start integrating at this moment. I find the combination of the present and future integration of systems and technologies interesting and important from the findings.

Q. What kind of impact do you think you and your research will have on NJDOT traffic operations and traffic safety, especially with your role now working in the industry?

A. With my previous experience as part of a university-led research team and now as a Traffic Safety and Specialist in the private sector, I am better positioned to facilitate the efficient and effective implementation of research findings.  A key factor enabling this transition is that Kelly McVeigh, who supervised the original research project, also oversees the current work that our firm is doing for NJDOT. Being on the industry side allows me to introduce and operationalize new ideas more rapidly, compared to the academic research side. This streamlined approach ensures that innovative performance measures can be deployed more quickly, and even a small modification has the potential to save lives, underscoring the value of this work.

Q. Moving to a different topic, your research frequently incorporates Machine Learning (ML) and Artificial Intelligence (AI) aspects. In your experience, what benefits does AI contribute to transportation research?

A. Over the past few years, AI and ML have undergone drastic modifications and growing levels of industry acceptance. Additionally, in research outcomes, AI and ML have played a key role in enhancing and providing new methodologies and new ways of problem-solving. As an engineer, the first thing we have to do is understand how we can solve an existing problem, and how fast, effectively, and efficiently we can do it.

Transportation is now highly reliant on big data and intensive analysis, so AI and ML back up the processing of this data, coming up with meaningful outcomes and enhancing solution measures much quickly than previous methods. In 2012 or 2013, a standard engineer would need to sit down to do a traffic study and go through manual counting, then process the data, then come up with solutions, which takes much longer to solve a problem. The problem may even change during the months-long process of developing a solution.

In traffic safety, we cannot wait for the four to five months it could take to solve a problem due to the pressing safety implications of doing so. Thus, we must start implementing countermeasures swiftly, and AI and ML components help us to quickly process data with more effective and efficient results.

During my early days as a student researcher, I would stand on the roadside, manually counting the vehicles and pedestrians to collect data for traffic studies. However. during my doctoral research, I developed my AI-driven tools that utilize advanced video systems for detection and analysis. This proactive approach enables the identification of intersections prone to high-crash scenarios well before crashes occur, allowing for timely interventions. By integrating AI and ML, my research introduced innovative methodologies for crash prediction and prevention, showcasing the feasibility of data-driven solutions to enhance roadway safety.

There is a certain chaos in human beings’ lives and surroundings that requires transportation to be a multidisciplinary field, which includes human-focused aspects. For some parts, AI is definitely required, but with other parts, we need to go through different approaches.

Q. Do you think that because of AI’s data collection and analysis possibilities, almost all engineers in the near future will need to start incorporating AI into their research?

A. It really depends. For our part of traffic engineering, very specifically, I would say yes, it would be one of the major requirements that an engineer would need to adopt. But if I was a traffic engineer working on policy or equity measures there might be some concerns related to data sharing or data privacy issues that might restrict them.

It depends on what side you are focusing on. When it comes to data collection, I would say AI incorporation is a must to collect and process data faster and more efficiently. But in terms of developing policies, rules, or statutes, there are certain psychological aspects that need to be in the thought process. Knowing human concerns and people’s approaches requires an emotional touch, which AI still lacks.

Transportation is a field connected with multiple disciplines; it touches on people’s emotions. For example, on a day when traffic does not work well when you’re returning home, you can get frustrated, and that frustration can end up in a fatal crash. There is a certain chaos in human beings’ lives and surroundings that requires transportation to be a multidisciplinary field, which includes human-focused aspects. For some parts, AI is definitely required, but with other parts, we need to go through different approaches.

Q. Congratulations on your recently approved dissertation. Could you give us some quick highlights of the research methods that went into producing your dissertation, “A Comprehensive ML and AI Framework for Intersection Safety”? What are the most important takeaways from your dissertation?

Deep Patel presenting his poster at the 2022 NJDOT Research Showcase Poster Session. Click image for PDF of the poster.

A. New Jersey is home to some of the most dangerous intersections in the United States, with four intersections ranked among the top 15 most dangerous, including the 1st, 2nd, and 3rd positions. Since 2019, there has been a trend of steadily increasing intersection-related crashes and correlated crashes within intersection boundaries. This prompted me to ask, “Why do we need to wait for crashes to happen to address the problem?”

To tackle this issue, I developed a proactive approach inspired by my work on the NJDOT research project. The approach focuses on analyzing near-miss incidents and traffic violations, using the concept of surrogate safety measures to identify potential risks before crashes occur. Surrogate safety measures help us detect near-miss events and violations, offering a predictive understanding of high-risk scenarios at intersections.

Using AI and ML, we developed tools that analyze vehicle and pedestrian trajectories in detail. These tools detect and classify conflicts, such as left-turn conflicts or yielding conflicts, enabling us to predict potential crash scenarios based on behavioral patterns at intersections. This proactive analysis allows us to recommend design changes and interventions before crashes occur.

Then, we explored the noncompliance component in a certain area, like red light violations or jaywalking. For instance, our analysis revealed that one in every four pedestrians does not use crosswalks. By integrating historical crash data, proactive trajectory analysis, and noncompliance trends, we developed a tool that ranks intersections based on multiple criteria. These include potential high-crash scenarios, contributing factors, and the economic impact of injury severity at specific locations.

Determining Key Factors Linked to Injury Severity in Intersection-Related Crashes in NJ. Deep Patel, Rowan University (2023 Research Showcase). Click image for slides.

Additionally, the research explored how emerging technologies, such as connected and autonomous vehicles, could be adapted to enhance intersection safety. By conducting trajectory analyses, we assessed how data from these technologies could inform future safety measures and interventions.

Overall, my research focused on identifying key factors within intersection boundaries to reduce crashes, improve mobility, and do so in a cost-effective manner. This comprehensive approach combines proactive analysis, advanced technologies, and human behavior insights to deliver practical and impactful solutions for roadway safety.

Q. So this tool seems to be one of the most important takeaways. Is the tool ready for NJDOT use to identify potential high crash risk intersections? Is that the main intent of the tool?

A. Yes, exactly. The tool is ready but not yet publicly available. We tested it on several intersections. It is currently a proprietary tool of my professor and myself at Rowan University. Anyone interested in using the tool can connect with us, but it is not yet publicly available and certain permissions are required.

Q. Is NJDOT using it or can they use it?

A. No, the department is not using it because this was part of my recent defense. They are aware of the tool’s capabilities because it was part of an innovative showcase. The tool’s documentation has been published through the University Transportation Center (UTC). Hopefully, in the near future, it could be applied by NJDOT.

Q. Looking ahead, you have your new position in an industry role. Would you like to continue with this sort of focus on transportation research, or are you anticipating a different career direction?

A. With my new position as a Traffic Safety and Mobility Specialist, I will be focused on transportation research, conducting high-quality industry research where I would help develop safety and mobility performance measures on certain corridors designed to move traffic more effectively and enhance safety on the roadways. My work will also include industry deployment and understanding the agencies’ concerns regarding the challenges they face.

Looking ahead, I see my career direction as a blend of research and practical implementation, ensuring that innovative solutions are not just developed but also applied to make a real-world impact. Ultimately, if my work can contribute to saving even a single life, I will consider it a meaningful and worthwhile achievement.


Resources

Jin, P. J., Zhang, T., Brennan Jr, T. M., & Jalayer, M. (2019). Real-Time Signal Performance Measurement (RT-SPM) (No. FHWA NJ-2019-002).  Retrieved at: https://www.njdottechtransfer.net/wp-content/uploads/2020/01/FHWA-NJ-2019-002.pdf

Jin, P. J., Zhang, T., Brennan Jr, T. M., & Jalayer, M. (2019). Real-Time Signal Performance Measurement Phase II. Retrieved at:  https://www.njdottechtransfer.net/wp-content/uploads/2022/08/FHWA-NJ-2022-002-Volume-I-.pdf

Patel, D., P. Hosseini, and M. Jalayer. (2024). A framework for proactive safety evaluation of intersection using surrogate safety measures and non-compliance behavior. Accident Analysis & Prevention, Vol. 192. https://trid.trb.org/View/2242428

Patel, D. (2024). “A Comprehensive ML and AI Framework for Intersection Safety: Assessing Contributing Factors, Surrogate Safety Measures, Non-Compliance Behaviors, and Cost-Inclusive Methodology.” Theses and Dissertations. 3305. https://rdw.rowan.edu/etd/3305

For more information about the 26th annual NJDOT Research Showcase, visit: Recap: 26th Annual NJDOT Research Showcase

Source: UHPC SOLUTIONS North America (top left); Midwest Roadside Safety Pool Fund (bottom left); Colorado Department of Transportation (right)

NJDOT’s Involvement with Transportation Pooled Fund Program

For over 45 years, the Transportation Pooled Fund (TPF) Program has made it possible for public and private entities to combine resources for high‑priority transportation research. By pooling funds and expertise, participating organizations can support research that can lead to innovative solutions at a lower cost to agencies and extend the reach of their research budgets.

State DOTs often fund TPF Program studies using State Planning and Research (SP&R) funds, which can be applied to transportation studies as well as research, development, and technology (RD&T) transfer activities.

We spoke with Dr. Giri Venkiteela, Innovation Officer in the Bureau of Research, Innovation and Information Transfer (BRIIT), to learn about NJDOT’s recent involvement with the Transportation Pooled Funded Program.


Q. What is the primary goal of Transportation Pooled Fund (TPF) Program?

The Federal Highway Administration leads the Transportation Pooled Fund Program

A. The Transportation Pooled Fund Program, or TPF, makes it possible for state DOTs, the Federal Highway Administration (FHWA), and other organizations to partner when there is a shared interest in solving a transportation-related problem. Partners contribute funds and other resources to cost-effectively address problems through research, planning, and technology transfer activities.

The FHWA administers the TPF Program. Only the FHWA or a State DOTs may initiate and lead a pooled fund study. Local and regional transportation agencies, private industry, foundations, and institutes of higher education can partner with sponsoring agencies to conduct pooled fund projects.

Q. What is your involvement with the TPF Program?

A. I work in NJDOT’s Bureau of Research, Innovation and Information Transfer (BRIIT) and serve as the Transportation Pooled Fund Program’s project manager, or coordinator on behalf of NJDOT. Among my responsibilities, I disseminate information about new “open” solicitations for projects from sponsoring agencies to NJDOT’s subject matter experts (SMEs) to gauge their interest in participation. Sometimes NJDOT SMEs or our customers — who network with their peers at other agencies — will hear about an upcoming or worthwhile project and ask that I monitor its status so that NJDOT can join as a partner once the project is posted. Depending on the topic, I may also serve as the agency’s SME on a particular project.

Q. How does NJDOT select project topics from “open solicitations” to join through the TPF Program?

A. The FHWA pooled funded website is publicly available and anyone can view the many “open solicitations” for projects that seek funding. We have a research budget that can and does support participation in pooled funded studies, but we also must set-aside funds and commit to the projects we join for several years over the lifetime of the research. Our budget is not a static number but dynamic. The amount that we can commit depends on how many projects NJDOT is interested in joining.

BRIIT’s Research Manager works with leadership in departmental units seeking funding to ascertain the value potential of individual projects and I offer my advice during this process as a member of BRIIT.

Q. How do NJDOT staff participate in these studies, and what are the requirements for participation?

A. The NJDOT unit managers need to assign an SME for the research project study. I serve as the research program manager but we need to have an SME who is interested in being the participant. I coordinate with FHWA on our financial commitment and make sure the FHWA website is up-to-date with our participation.

Once the project receives the necessary financial commitments, the lead state is responsible for the administration of the research project, which may include the selection of universities or contractors to perform the research.

Once we all contribute the money, the project proceeds like a regular research project. The lead state holds quarterly meetings, prepares quarterly progress reports and disseminates the research. They keep the various participating agencies informed of progress. The lead state uploads progress reports to the FHWA’s website and the states will have their own websites to share project reports, latest news and other tools.

If SMEs or other researchers want to know what’s going on in any particular quarter, they can find the information that is shared. Our SMEs may also be involved in the development of a scope of work and, over the course of the project, may have specific needs that they would like for the selected research team to address — for example, such as thorough testing of materials.

Q. What are some examples of successful pooled funded studies and their outcomes that NJDOT has joined?

Researchers at Midwest Roadside Safety Facility state-of-the-art computer software, including LS-DYNA, to simulate real-life impact events. Using computer simulation, it is possible to reduce design costs and better understand system behavior. Click for examples.

A. The Midwest Roadside Safety Pool Fund program is a fantastic pooled fund study where a lot of crash testing of roadside barriers with different materials has been performed. The costs for such testing would be difficult for one state to bear so it makes sense for the states to come together so that more testing can be done. In this case, Nebraska DOT leads the research. Back in 1990, three Midwestern states started this pooled funded research effort, but it has grown to now include 22 lead and partnering states. The participating state DOTs collaborate with the Midwest Roadside Safety Facility at the University of Nebraska-Lincoln. So, if our SMEs see a new design or material that needs testing, they can put this request forward through this study.

Clear Roads Winter Maintenance Research TPF-5(353), led by the Minnesota Department of Transportation, was a 2024 Recipient of the FHWA Transportation Pooled Fund Excellence Awards.

The Clear Roads Winter Highway Operation — now in its third phase — is another great example. The Clear Roads pooled fund project began in 2004 with four members interested in snow clearance and related issues. The project performs real-world testing of winter maintenance materials, methods, and equipment and has grown to include 39 participating states. The Minnesota’s DOT leads the project, and was recently recognized with a TPF 2024 Excellence Award.

This is just a handful of examples — there are many others being driven by state DOTs, each of which have their own unique flavors.

Learn more about research on and use of Ultra-High Performance Concrete. David Hawes, Resident Engineer for Pulaski Skyway, NJDOT is featured at 2:13.

I would also like to mention one non-state DOT sponsored research project. The Structural Behavior of Ultra High Performance Concrete project is led by the FHWA itself through its Turner Fairbanks Research Center. The project conducts various experiments with UHPC. Every state wants to know what is happening with this relatively new material. The project objective is to develop knowledge on the structural performance of UHPC materials in highway bridges and structures. The test results are expected to inform proposed structural design guidance for UHPC components and support usage of UHPC by interested DOTs.

Q. How are the results and findings of these studies disseminated to the participating agencies, public or other stakeholders?

A. Some projects are ongoing like the Midwest Roadside Safety study. Information is flowing through their research hub with project reports and other materials posted on their website along with information on conference presentations, trainings, and newsletters. If you need any information, it will be conveyed through the program.

But for some pooled fund projects, they need to implement some of the tools that they are developing so that is how they would come to contact the states, such as to have something tested or looked at. The first priority would be given to the states that are participating in the pooled funded study.

For FHWA, if something new comes out of the pooled funded study, I think they may elevate the innovations into other areas such as through the Every Day Counts Program.

Recently FHWA started a pooled fund excellence awards to highlight the importance of collaboration and partnership in transportation research and encourage states to participate. Actually, I participated as a judge last year. We selected two projects for the inaugural TPF Excellence Awards. I already mentioned the Clear Roads Winter Maintenance Research project. The other award was given for an Indiana DOT project, Member-Level Redundancy in Built-up Steel Members, which led to new AASHTO Guide Specifications.

Q. How do NJDOT SMEs who are participating in the pooled funded studies share what they have learned?

A. We have started to ask that the SMEs share a short yearly progress report that reflects upon what they may be learning. Since NJDOT is obligating funding, we need to have some kind of justification for the commitment. The reporting can help us consider the benefits of the research or innovations being advanced, and to consider some of its possible implications for NJDOT practices.  

With a good and continuing dialogue with our SMEs, we should be able to determine if it makes sense to have the SMEs speak at a future NJ STIC meeting to share what they are learning and convey what is innovative about the pooled funded study’s research.

Q. Do you foresee opportunities for having selected researchers from funded projects for which NJDOT was a partner share their findings with NJDOT employees such as at a Tech Talk?

A. The SMEs are well-positioned to help us to identify whether it might make sense to invite a researcher from the study to speak. They can help identify how best to promote and disseminate the research and innovation through some other activity.

Q. Has NJDOT served as the lead organization on pooled funded research? Are there projects that NJDOT would like to lead?

A. We have not led a pooled funded research project yet, although we had some initial plans to do so before the pandemic.  At this point, we think it may be more productive to join as a participating organization. We think serving as participating organization may be a cost-effective way to direct some of our funds and have our SMEs connected to meaningful research.

Of particular note, we just joined the Northeast Transportation Research Consortium (NTRC), a pooled funded study for our AASHTO Region 1, that will support peer exchange activities. The effort seeks to enhance member state collaboration in solving our common problems. This is a pooled fund initiative that is just getting launched and is led by Vermont DOT. NJDOT is one of the six participating state DOTs in the Northeast.

Q. Are there any other projects that are you are thinking of joining at this time?

A. Yes. This is an ongoing process. There are a few projects that we are considering. Solicitations can pop up throughout the year.


Resources

National Cooperative Highway Research Program. 2023. “TPF: Transportation Pooled Fund” (website). https://www.pooledfund.org/

National Cooperative Highway Research Program. 2024. “Transportation Pooled Fund – Open Solicitations” (web page). https://pooledfund.org/Browse/open

National Cooperative Highway Research Program. 2024. “Clear Roads Phase II” (web page). https://pooledfund.org/Details/Study/604

National Cooperative Highway Research Program. 2024. “Midwest Roadside Safety Pooled Fund Program” (web page). https://pooledfund.org/Details/Study/653

National Cooperative Highway Research Program. 2024. “Structural Behavior of Ultra-High Performance Concrete” (web page). https://pooledfund.org/Details/Study/695

National Cooperative Highway Research Program. 2024. “TPF: National Transportation Research Consortium (NTRC) (website). https://pooledfund.org/Details/Study/783

National Cooperative Highway Research Program. 2024. “Member-level Redundancy in Built-up Steel Member” (web page). https://pooledfund.org/Details/Study/482

AASHTO. 2018. Guide Specifications for Internal Redundancy of Mechanically Fastened Built‑Up Steel Members. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO. 2018. Guide Specifications for Analysis and Identification of Fracture Critical Members and System Redundant Members. Washington, DC: American Association of State Highway and Transportation Officials.