NJDOT UAS/Drone Procedures Manual and Best Practices for Use in New Jersey

The use of drones at NJDOT has expanded to improve safety and efficiency and save time and money.

The use of drones at NJDOT has expanded to improve safety and efficiency and save time and money.

The NJDOT Knowledge Management Toolbox offers examples of several knowledge sharing practices that have been, or could be, adopted by agency units to retain knowledge in a unit in the face of illness, retirements or transfers to other units at NJDOT.

NJDOT’s Unmanned Aircraft Systems Flight Operations Manual (UASFOM) is an example of knowledge sharing through development of a procedures manual that guides practice within the agency. In 2021, Anil Agrawal, PhD., a Professor of Engineering at The City College of CUNY, completed a research study, NJDOT UAS/Drone Procedures Manual and Best Practices for Use in New Jersey, funded through the NJDOT’s Bureau of Research. The study resulted in the UASFOM that standardizes all aspects of UAS operations for NJDOT’s use, and provides guidance to NJDOT personnel, consultants, and contractors for the inspection, operation, and management of UAS. The document emphasizes maintaining a high level of safety standards in daily flight operations while meeting performance targets.

NJDOT’s Bureau of Aeronautics has used drones to video NJDOT dredging operations, among other applications.

NJDOT’s Bureau of Aeronautics has used drones to video NJDOT dredging operations, among other applications.

Unmanned Aerial Systems (UAS), or drones, were promoted by the Federal Highway Administration (FHWA) as one of the Every Day Counts Round 5 (EDC-5) innovations. In May 2016, the New Jersey Department of Transportation’s Division of Multimodal Services established the Unmanned Aircraft Systems (UAS) Program as a unit within the Bureau of Aeronautics. Under the direction of NJDOT’s UAS Coordinator, Glenn Stott, NJDOT became a national leader in UAS. Mr. Stott retired from the agency in 2021.

NJDOT Bureau of Aeronautics used several funding grants to build the program and purchase equipment and provide training. Integrating UAS in transportation has been the subject of research and field studies to demonstrate the use case for high-mast light pole inspections, traffic incident management and monitoring, dredging and beach replenishment, photogrammetry, bridge inspection, and watershed management, among other topics. UAS has been shown to improve safety, save time and money and increase efficiency. UAS is considered to be institutionalized within NJDOT.

An example Risk Management Worksheet is one of several forms described in the Procedures Manual.

An example Risk Management Worksheet is one of several forms described in the Procedures Manual.

The procedures manual provides comprehensive guidance for UAS missions from planning to debriefing. The manual presents NJ’s laws and regulations affecting UAS operations, discusses NJDOT’s safety management system and risk management approach, established best practices, the agency’s three-phase training program, and incident reporting. The manual also provides NJDOT’s UAS forms needed for documentation and to ensure compliance with Federal Aviation Administration (FAA) regulations. The manual is intended to be a “living document” to incorporate changes as experience grows with UAS within the agency.

A procedures manual is one way to counter the loss of expertise and institutional knowledge when employees retire or transfer. A manual can build and sustain knowledge within the agency to ensure continuity of operations.

The UASFOM can be found in the Knowledge Management Toolbox. The Final Report and Technical Brief for the Research can be accessed here.

Launching the UAS Program: STIC Incentive Funding Grant – Final Report

Click for report

Unmanned Aerial Systems (UAS), or drones, were promoted by the Federal Highway Administration (FHWA) as one of the Every Day Counts Round 5 (EDC-5) innovations. In 2017, the NJDOT Bureau of Aeronautics applied for and received a NJ State Transportation Innovation Council (STIC) Incentive Program Funding grant to purchase equipment and provide training to evaluate the use of UAS for applications within NJDOT. Prior research had determined that this innovative technology could improve safety and efficiency and reduce costs.

The final report, Unmanned Aircraft System (UAS): Purchase and Training, describes the use of the STIC funding to assist in establishing the UAS program within the Bureau of Aeronautics.  The report describes the training curriculum and two use cases — high mast inspection and traffic incident management — and offers lessons learned and best practices.

The STIC grant, in combination with two other grants, enabled the Bureau to advance UAS within NJDOT. The innovation is now considered institutionalized within the agency.  A video, Drone Technology at NJDOT, highlights the efforts to launch and integrate UAS in NJDOT operations.

FHWA offers up to $100,000 to each STIC each year. You can find out more about the STIC Incentive Program here.

Unmanned Aerial Systems

What is Unmanned Aerial Systems (UAS)?

UAS offer several transformative aspects for highway transportation, enhancing safety and productivity, while also reducing cost.

Unmanned aerial systems (UAS), sometimes referred to as drones, are multi-use aircraft controlled from a licensed operator on the ground. The benefits of UAS are wide ranging and impact nearly all aspects of highway transportation—replacing boots on the ground, increasing accuracy, speeding up data collection, and providing access to hard-to-reach locations.

UAS provide high-quality survey and data mapping that can be collected automatically or remotely. Large areas can be mapped relatively quickly in comparison to traditional survey and mapping practices. Other uses include survey and imagery as part of emergency response events, where traditional surveying and mapping practices may be inadequate or sites impossible to access. UAS can supplement conventional activities, such as bridge safety inspection and routine construction inspection, to increase safety and collect data from otherwise unattainable perspectives.

UAS improve operations, construction, inspection, and safety by collecting data needed to design, build, and operate the highway system. Bridge inspection enhanced by UAS improves safety for the inspection team and the traveling public by reducing the need for temporary work zones and specialized access equipment, which can also be very cost effective. Construction inspection with UAS allows for a bird’s eye view of a project’s progress and for the development of three-dimensional (3D) terrain models that document the construction process and assist in assessment of earthwork quantity measurement.

UAS technology gives State departments of transportation (DOTs) eyes-in-the-sky during incident responses for roadway disturbances and for damage assessments following fires, earthquakes, and bridge hits. It allows States to obtain quality data to make better-informed decisions, all collected from a relatively low-cost platform.

Learn more about this EDC-5 Innovation.

Field tours demonstrate UAS capabilities to staff and partnering organizations.
Field tours demonstrate UAS capabilities to staff and partnering organizations.

Integrating UAS in NJ Transportation Operations

Stage of Innovation:
INSTITUTIONALIZED
(December 2021)

NJ has been a national leader in UAS and initiated several activities before and since EDC-5:

Established Drone Program. NJDOT’s Division of Multi-Modal Services established a drone program and hired a UAS Coordinator position in Aeronautics to lead NJDOT’s UAS initiatives.

Leveraged Federal Financial Assistance. NJDOT successfully applied for three FHWA grants, including:

FHWA Tech Transfer Deployment Funds to hold a UAS Peer Exchange on Best Practices. A national UAS Peer Exchange was held based on the successful NJ model and NJDOT’s UAS Coordinator presented at the event in Washington DC.

FHWA STIC Incentive Program Funding to purchase equipment and training to evaluate the use of UAS for structural inspections, Traffic Incident Management (TIM), surveying and accelerating construction projects, determining flooding adjacent to state highways, and bridge deck thermography mapping.

FHWA State Planning & Research Program funds for research into Best Practices, Policies and Procedures to recommend potential legislative and regulatory remedies, enforcement and compliance strategies and tools, and training products for engineers and consultants involved in UAS operations.

Conducted Research and Field Demonstration Studies. Integrating UAS in transportation has been the subject of research and field studies to demonstrate the use case for high-mast light pole inspections, traffic incident management and monitoring, dredging and beach replenishment, photogrammetry, bridge inspection, and watershed management, among other topics.  

In 2019 after the kick-off EDC-5, NJDOT established a protocol to streamline requests for UAS usage on projects through the SimpliGov online system. The agency also developed an internal Night Training Powerpoint Course to fulfill the FAA COA night authorization requirements, helping to support future requests for NJDOT UAS operations at night. Additionally, the agency created an interactive UAS display for "Take Your Child to Work Day" to promote staff and youth education of the program's work. This display was done as part of the NJDOT Commitment to Communities initiative and under the Bureau of Aeronautics' mandate to promote aviation awareness and showcase UAS unit benefits. By 2020, the NJDOT UAS program had supported more than a dozen construction management projects.

STIC Incentive Funding helped build the capacity of the UAS Program.  Work on this grant was completed and the final report is available here.  The NJDOT UAS Program was featured in the FHWA EDC-5 Webinar Series: (SR200). The presentation, Developing a UAS Program: From Startup to Additional Tasking, highlighted key challenges, benefits and lessons in standing up a UAS Program at a state DOT.  The NJDOT UAS Program was highlighted in a video highlighting the innovation and benefits of the program for the state.  The NJDOT UAS Program was featured in the UAS for Traffic Monitoring Applications webinar as part of the EDC-5 series of webinars in December 2020.

What's Next?

The UAS Program subsequently was awarded a second STIC Incentive Funding Grant to purchase additional equipment and to perform UAS Remote Pilot in Command (RPIC) trainings to support transportation emergency response and operations safety units.  The NJDOT UAS Program is working with other state DOT agencies and domestic vendors to domestically source drone technology in response to the American Innovation and Competitiveness Act expected to go in effect in 2023.

Click for the Fact Sheet: Unmanned Aerial Systems

Click for Infographic: Benefits of UAS for High Mast Inspection

UNMANNED AERIAL SYSTEMS: NEW & NOTEWORTHY

NJDOT UAS/Drone Procedures Manual and Best Practices for Use in New Jersey

NJDOT UAS/Drone Procedures Manual and Best Practices for Use in New Jersey

NJDOT’s Unmanned Aircraft Systems Flight Operations Manual (UASFOM) is an example of knowledge sharing through development of a procedures manual that guides practice within the ...
Launching the UAS Program: STIC Incentive Funding Grant – Final Report

Launching the UAS Program: STIC Incentive Funding Grant – Final Report

The final report for this STIC incentive project describes the use of the grant to assist in establishing the UAS program within the Bureau of ...
Drone Technology at NJDOT

Drone Technology at NJDOT

This video features NJDOT's Unmanned Aerial Systems program in the Bureau of Aeronautics and explores how the adoption of drone technology can serve NJDOT's goals ...
Drone Program Reaches New Heights, Seeks to Go Higher

Drone Program Reaches New Heights, Seeks to Go Higher

Three years after its establishment, the UAS Program at NJDOT continues to reach new heights and seeks to go higher. ...
Drone Program Takes Off in Bureau of Aeronautics

Drone Program Takes Off in Bureau of Aeronautics

So what does it take to start a new and innovative NJDOT Drone program when it has never been done before? ...
Unmanned Aerial Vehicle (UAV) Peer Exchange at NJDOT

Unmanned Aerial Vehicle (UAV) Peer Exchange at NJDOT

NJDOT held a Peer Exchange on Unmanned Aircraft Systems (UAS, also known as Drones) on October 3-5, with representatives including six state DOTs and FAA. ...

Drone Technology at NJDOT

NJDOT’s Unmanned Aerial Systems program in the Bureau of Aeronautics is demonstrating how the adoption of drone technology can serve NJDOT’s goals to increase safety, increase efficiency, save time, and save money. Drones are replacing boots on the ground, increasing accuracy, speeding up data collection, and providing access to hard-to-reach locations for divisions throughout the Department.

Click on the link below to see how drones are being used within NJDOT to drive innovation in the way our agency and workforce operate and what lies ahead for this technology.

Drone Program Reaches New Heights, Seeks to Go Higher

In May 2016 the New Jersey Department of Transportation’s Division of Multimodal Services established the Unmanned Aircraft Systems (UAS) Program as a unit within the Bureau of Aeronautics.  The UAS program coordinator position was created within the Bureau of Aeronautics to lead NJDOT’s UAS initiatives. This position was established to provide leadership, guidance, and coordination for division flight operations. Other responsibilities of the position include ensuring compliance with state and federal aviation regulations, coordinating FAA airspace waivers and authorizations, assisting RFP efforts when contracting consultants, and informing NJDOT of public perception and liability.

In standing up the program, a survey was distributed to all other NJDOT Divisions to identify potential missions that could benefit from the integration of UAS. The 38 survey responses were analyzed and condensed into common mission categories such as structural inspections and construction project management. The missions were also evaluated to determine whether the use case had the potential to improve safety, increase efficiency, save time and save money for their routine operations. A suitable mission profile was developed and risk analysis conducted to create pilot projects for testing.

An early NJDOT study revealed the cost-effectiveness of high mast light pole inspections

UAS brings new tools forward for 3-D “Reality Modeling” with photogrammetry.

Initially, pilot project flights were conducted in support of structural evaluations, construction project management, traffic management, and watershed evaluations.   Valuable lessons were garnered from these initial pilot projects.  For example, a study of the benefits of using UAS for high-mast light pole inspections (HMLP) was shared with FHWA and a topic covered in NJDOT’s presentation at an invite-only national peer exchange held in Washington DC by the FHWA in 2018.

NJDOT’s UAS Coordinator, Glenn Stott, who had previously organized and hosted an NJDOT Peer Exchange on UAS, was invited to participate in the national peer exchange.  HMLP inspections, Stott observed, could be performed more quickly and less expensively than by traditional means. Cost savings include lost productivity due to the traveling public experiencing congestion issues. One advantage of UAS inspections is that they do not require shutting down a travel lane for a bucket truck to occupy. Furthermore, a UAS inspection only requires a crew of three to complete an inspection: two controllers: one pilot and one engineer, each with a camera and screen, and a third visual observer to monitor the site. Using this method, NJDOT was able to complete six or seven inspections per day compared with one or two using traditional methods, contributing to “significant” cost savings.

Going forward under EDC-5, the goal of the NJDOT UAS Program is the institutionalization of UAS technology and its integration throughout NJDOT operations. NJDOT hopes to leverage recently awarded STIC incentive funding to remove barriers in equipment and training toward advancing several potential use cases, including:

  • Survey Rendering of 3D Models. 3D modelling is a valuable tool that saves time and money by cutting person-hours and eliminating rework for transportation projects. 3D modeling of bridge decks and infrastructure is becoming a cost-effective inspection method for evaluating bridge decks to detect delamination in concrete. Using the right UAS technology, 3D modeling can rapidly determine the volume of stockpiles with a high degree of accuracy. Georgia DOT reports that that select UAS equipment can match GPS and LIDAR survey equipment and found the UAS reported volumes were within 1 percent of the traditional methods.
  • Watershed Resiliency. In March of 2018 NJDOT conducted several UAS photography missions along Routes 80 and 23 to support a Watershed Resiliency Analysis. Traditional photos were taken, but a thermal imaging capability would allow the NJDOT to more accurately determine the extent of flooding along our state highways. Thermal imaging overlays can more accurately define the extent of highway runoff and flooding issues. Thermal imaging is a better tool to detect water through the tall grass in flooded areas. Minnesota DOT has researched this use case and the NJDOT would like to expand on this research.

    Field tours demonstrate UAS capabilities to staff and partnering organizations.

  • Bat Counts Under Bridges. North Carolina is using infrared thermography to conduct counts on bat populations under bridges. New Federal regulations require state DOT’s to ensure they do not disturb a protected species while conducting inspections. The NJDOT Division of Environmental Resources has requested UAS assistance in conducting bat counts under bridges because they live in high and dark areas. A thermal imaging camera mounted on a UAS will confirm the presence of bats and should allow the counting of individual bats in near total darkness by detecting their body heat.
  • Thermal Inspections of Concrete Bridge Decks. Infrared thermography of bridge decks is becoming a valuable and cost-effective inspection method for evaluating bridge decks to detect delamination in concrete. The delamination photos can be rendered by addition of higher-end gaming computers into a 3D model that can be used to determine the exact location of each delamination.
  • Large Potholes and Longitudinal Joint Separations. The efficient identification of large potholes and longitudinal joints would require autonomous UAS that can be programmed to safely fly over long distances. Current regulations require small UAS to fly within the line of sight of the operator which makes this use case currently very inefficient and not cost-effective.
  • Thermal Imaging for Paving Project Management. DelDOT is examining the use of UAS to detect significant thermal anomalies during the laying of new asphalt. The UAS would take standard photographs and thermal photos of the same area. The photos would then be compared to detect potential quality issues in the new pavement. Sets of thermal and visual photos can be rendered through higher end gaming computers into a 3D model that can be used to generate a guide sheet to make it easier for work crews quickly find each problem area at the work site.
  • Construction Project Management. Several on-site inspectors, resident engineers, and traffic engineers have commented that the tiny UAS screen located on the UAS controller is difficult for a field team to view. A larger monitor mounted in the rear of the UAS Program vehicle can allow supervisors, upper management, and other non-participants to safely view UAS output in real time without interfering with the movement of the UAS crew.

Three years after its establishment, New Jersey’s UAS Program, continues to reach new heights as it discovers how it can effectively work with NJDOT’s divisions and bureaus to improve safety, increase efficiency, save time and save money in routine operations.  The UAS program challenges both the agency’s leaders and staff to adapt to new technologies, seek the training to develop new skills, and find new ways to collaborate to advance innovations in its transportation operations.

Drone Program Takes Off in Bureau of Aeronautics

The Drone program within the Division of Multimodal’s Bureau of Aeronautics has begun to take shape as staff, funding, and a multitude of innovative ideas have come together. So what does it take to start a new and innovative NJDOT Drone program when it has never been done before? First, it starts with knowledgeable staff. A UAS (Unmanned Aerial Systems) Coordinator position was created within the Bureau of Aeronautics to lead NJDOT’s UAS initiatives. The UAS Coordinator’s role is to:

  • Provide leadership, guidance, and coordination for flight operations to Divisions
  • Ensure compliance with State and Federal Aviation Regulations
  • Ensure flight operations are based on the most current best practices
  • Coordinate FAA Airspace Waivers and ATC Authorizations
  • Develop Implementation and Staff Training Plans
  • Assist with the drafting of RFP’s for consultants
  • Keep NJDOT informed of public perception and liability

Captain Glenn Stott is the current UAS Coordinator for the NJDOT. He is a retired Canadian Air Force jet instructor, Test Pilot, and Flight Commander. Glenn is an FAA designated examiner and authorized to grant the highest level of pilot license. In addition to his aviation experience, Glenn’s understanding of emerging technologies earned him part-time positions as an Adjunct Technology Professor for both Kean and Seton Hall Universities. Glenn’s UAS background started over 20 years ago with remote control helicopters. Currently, he serves on the NASAO (National Association of State Aviation Officials) UAS Committee and is a frequent speaker regarding drone technology in the transportation industry.

Funding was the next big issue in setting up a new program of this caliber. NJDOT applied for three FHWA grants and was fortunate enough to be awarded all three. These three separate grants are: FHWA Tech Transfer Deployment Funds for a UAS Peer Exchange on Best Practices, FHWA State Transportation Innovation Council (STIC) Incentive program for equipment & training, and FHWA State Planning & Research Program for Best Practices, Policies and Procedures.

Runway 32 Taxiway construction at Eagles Nest Airport, West Creek, NJ. Photographed by Glenn Stott via drone

Runway 32 Taxiway construction at Eagles Nest Airport, West Creek, NJ. Photographed by Glenn Stott via drone

There are numerous potential areas for public use in transportation where UAS technology makes sense that many New Jerseyans may not be aware of. Some of the initiatives being explored are:

  • Traffic Incident Management
  • Structural Inspections
  • Traffic Congestion Assessment
  • Aerial 3D Corridor Mapping
  • 3D Reality Modeling from Photogrammetry
  • Emergency Response Assessment
  • Real-time Construction Project Management
  • Landfill volume calculations
  • Inspections of confined or hazardous spaces

Professional UAS operations possess many advantages over traditional methods for daily operations. Some of these advantages include a relatively low cost compared to the manpower, time and equipment traditionally used, rapid deployment, a very low carbon footprint, and the ability to operate in areas that are risky or dangerous to humans. For example, NJDOT owns and operates 250 High Mast Light Poles (HMLP) near NJ roadways. HMLPs are approximately 100-feet high, and are traditionally inspected with either binoculars or bucket trucks. While there is an inherent safety risk in performing inspections so high up near a busy roadway, UAS can alleviate this risk by providing upclose inspection of HMLPs. In addition to the safety advantage, UAS provide a higher quality inspection with closer views, higher definition photos, and with less disruption to traffic as the need for a lane closure is eliminated. To date, 241 out of 250 NJDOT HMLP inspections have been successfully completed with UAS, and photo logs have been created to identify and track problem areas. UAS structural inspection does not replace the human inspector, it is simply a tool used by the inspection team to identify potential problem areas that require closer examination.

Dredging project in Brigantine, Atlantic County. Photographed by Glenn Stott via drone

Beach Replenishment in Manasquan, NJ. Photographed by Glenn Stott via drone

NJDOT UAS projects are selected and pursued based on the opportunity to increase safety, increase efficiency, save money, and save time. Projects at this time range from collecting aerial photos over marshlands that cannot be traversed on foot, to aerial photos and videos of dredging projects at all stages in order to view the direction of the tide as well as the shoals and shallows. Drones are also being used to create 3D models that offer representation of a site and surface elevation. For example, a drone has been used to map a section of Route 26 to evaluate the potential of creating 3D maps for surface surveys. Areas are still being surveyed by hand in order to evaluate the accuracy of the drone survey elevations and calibrate the systems. 3D “Reality Modeling” with Photogrammetry provides real-world models for conceptual design, construction, and operational decisions, using simple photography rather than expensive LIDAR. 3D models created using drone Photogrammetry can be assessed and shared in CAD or GIS. The Association for Unmanned Vehicle Systems International (AUVSI) released their 2017 Economic Impact Report that estimates in the first 3 years of integration more than 70,000 jobs and 13.6$ billion economic growth for the United States. By 2025 they estimate 100,000 jobs created and an economic impact of $82 billion. As you can see, the possibilities for the use of UAS are numerous and innovative. The Bureau of Aeronautics looks forward to pursuing projects that enhance safety, efficiency, and cost-effectiveness for NJDOT in a variety of areas.

Contributed by Glenn Stott & Kinan Tadmori
Feature image (above) is a High Mast Light Pole on Route 1, Mercer County. Photographed by Glenn Stott
This article first appeared in the December 2017 CIPGA Scoop, the employee newsletter of the [NJDOT] Capital Investment, Planning and Grant Administration.

Unmanned Aerial Vehicle (UAV) Peer Exchange at NJDOT

NJDOT held a Peer Exchange on Unmanned Aircraft Systems (UAS, also known as Drones) on October 3-5, 2017. Representatives of six state DOTs, FAA, the NJ State Police and the NJ Forest Fire Service met to discuss best practices, policies and procedures, current projects, research studies, funding sources, state UAS legislation, and common challenges. The meeting resulted in insights on key topics such as data management and privacy, regulation of airspace, training requirements, public education, and the continued exchange of best practice and research among state DOTs.

On October 25, 2017, UAS Coordinator, Glenn Stott spoke on the topic at the NJDOT Research Showcase. To learn more, see his presentation.