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Importance of infrastructure monitoring

= According to the 2025 Infrastructure Report Card, the America’s
infrastructure is C overall.

= The bridges in the country with an average age of about 47 years, that
serve as vital connections throughout the transportation system.

= Many bridges are approaching or have exceeded the 50-year life they
were designed for.

= To ensure continued safety and serviceability, regular crack monitoring
and maintenance are required.
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Bridges

2025 Report card, Photo: Brent Spence Bridge Corridor Project
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Existing crak monitoring techniques

= Acoustic emission
- Disadvantages : Expensive, uncapable of long-distance monitoring

- Localization requires multiple sensors

= Distributed fiber optic sensing

- Disadvantages : only suitable for near-field monitoring

= Robot-assisted inspection

- Disadvantages : only suitable for surface, visible cracks

Gostautas, et al. 2005 Poorghasem, et al. 2025 Metni, et al. 2007
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Distributed acoustic sensing
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Cheng, et al. (2019). Truong, et al. (2024).
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Proposed monitoring approaches
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Multiphysics finite element analysis
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Data processing

Translate the simulation results to DAS signals
e Cleaning

* Moving average

e Spatial down-sampling

 Temporal down-sampling
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DAS system configurations
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Whether crack can be monitored?

* Feasibility : exceed DAS’s sensitivity (nanostrain ng)
e Crack larger than 20 mm x 20 mm can be monitored at 6 m away.

* Fiber optic cable layout under the bridge deck are more sensitive to deep crack.
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Whether crack can be distinguished?

The primary frequency of crack : 15.4 kHz, 52 kHz, more than 100 kHz [xx]

When a 15.4 kHz pulse was applied as the cracking wave, the frequency spectrum of
the signal, captured 6 m horizontally and 0.459 m vertically, still exhibited frequency
components exceeding 10 kHz. This frequency is significantly higher than the low-

frequency band associated with vehicular traffic and pedestrian activities.
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Whether crack can be located?

60 sets data with different crack and distance are tested for localization performance.

* Maximum strain method : The position that exhibits the maximum measured strain.
* Root mean squared error:2.13 m

e First arrival picking method : The position derived from the first arrival times.

* Root mean squared error: 0.79 m
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Factors : system configurations

Primary DAS system configurations:
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Factors : system configurations

e Coarser gauge length or lower sampling rates lead to underestimation of maximum
strain values, resulting in underestimation of crack severity.
« Among the configuration parameters of the DAS system, channel spacing exhibited

the most significant impact on localization performance.

Crack Gauge Channel Sampling rate Absolute . Estimated crack
No. . . maximum strain .
location (m) length (m) spacing (m) (kHz) (ne) location (m)

1 6.2 1 0.2 20 73 6.2

2 6.2 2 0.2 20 35 6.2

3 6.2 3 0.2 20 25 6.2

4 6.2 4 0.2 20 17 6.2

5 6.2 2 0.5 20 32 5.3

6 6.2 2 1 20 28 9

7 6.2 2 2 20 24 4

8 6.2 2 0.2 4 25 6.2

9 6.2 2 0.2 5 25 6.2

10 6.2 2 0.2 10 35 6.2
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Other factors

Acoustic source

- Concrete materials and crack types

Propagation
- Paths and the properties of the propagation medium
= Noise

- Environmental noise and traffic-induced vibrations

Temperature

- 0.2 ug/°C
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Performance

= Monitoring performance
- Sensitivity : Acoustic emission > DAS (ng) > static DFOS (meg)

- Distance : DAS (km) > static DFOS (m-km)> Acoustic emission(m)

= Localization performance
- Accuracy : static DFOS > DAS > Acoustic emission

- Long-distance localization : DAS > static DFOS > Acoustic emission

Notice: The localization of Acoustic emission need 3 sensors to form a

sensing array.
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Economic analysis

Background :

20 km-long and 12 m-wide reinforced concrete sea-crossing bridge.

AE sensor are assumed to integrated with pre-amplifier.

Cable for static DFOS
Cable for DAS
() AE sensor
—— Cable for AE
[ 1 DAQ for AE

{1m

& m

6 m
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Economic analysis

By comparing the capital costs of the three techniques for a 20 km-long and 12 m-
wide reinforced concrete bridge, DAS is found to be more cost-effective.

e The capability of DAS: perform long-distance, far-field monitoring using single

fiber optic cables and single DAQ.

Cost AE DFOS DAS

categories Unit cost Quantity Unit cost  Quantity  Unit cost Quantity

Price on
Design 1 N.A. N.A. N.A. N.A.
request
Sensor $600 2500 220,000
$0.18/m $0.18/m 20,000 m
Cable $195/m 2067 m m
$10,000
$300,000 $500,000
DAQ (32 79 2 1
(Estimated) (Estimated)
channels)
Summary $2,693,065 $639,600 $503,600
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Conclusion

The DAS-based approach was validated to be effective in monitoring far-
field crack. The elastic wave emitted by cracks measuring 20 mm in

length and 20 mm in depth, located 6 meters away.

= Using first arrival picking method, high-accuracy crack localization with an

overall RMSE of 0.942 m was achieved.

= Coarser gauge length or lower sampling rates lead to underestimation of
maximum strain values, resulting in underestimation of crack severity.

Channel spacing exhibited significant impact on localization performance.

= For large-scale structures crack monitoring, DAS is an efficient and cost-

effective solution.
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