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Background
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Predicting Crash Severity Matters:
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Prevention: Assess the contributing factors, anticipate
when/where the severe crashes might occur.

Faster Emergency Response: Prioritize high-severity
crashes for urgent aid

Efficient Resource Allocation: Optimize medical and
law enforcement dispatch

AV Behavior Modeling: Train autonomous vehicles to
react appropriately

Improved Infrastructure Planning: Identify
hazardous areas for safety upgrades
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Background

e Challenges in Crash Severity Prediction

o Crash Report Structure: Crash reports typically
contain a combination of structured, descriptive crash
features (parameters), and crash narratives.

© Incomplete or missing data in both structured and
narrative fields

o Inconsistent formats

o Narratives vary in wording and detail
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Research Objective

e Develop a crash severity prediction model that leverages both structured data and
synthesized crash narratives

e Generate consistent, informative
crash descriptions by transforming
structured parameters into synthetic ﬁ

narratives |

CLASSIFICATION

e Apply large language models (LLMs)
to analyze and predict crash severity from _
these synthesized narratives . (MINOR' SEVERE




Methodology & Data
Processing
Models (LLM) Methods
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The Model Dataset

e 3,293,688 crash records from January 2010 to November 2022, tabulated.

o From features related to crashes, only the information about crash time, date,
geographic location, and environmental conditions was utilized.

o The KABCO crash severity scale was transformed into three categories: 'No Injury,’

‘Injury,’ and 'Fatal.’
®  No Apparent Injury: No Apparent Injury
B Possible Injury, Suspected Minor Injury: Injury

B Suspected Serious Injury, Fatal Injury: Serious injury or Fatal




The Model Dataset

* 3293676 Records

0 No Apparent Injury 2569464 (%78)

0 Possible Injury 545166 (%16.5)

0 Suspected Minor Injury 153948 (%4.6)
O Suspected Serious Injury 18149 (%0.5)
O Fatal Injury 6949 (%0.2)

* 479302 records (%14.5 of total)

0 No Apparent Injury 375173 (%78.2)
O Possible Injury 57442 ( %12)

0 Suspected Minor Injury 39420 (%8.2)
0 Suspected Serious Injury 5948 (%1.2)
0 Fatal Injury 1319 (%0.27)



Methodology: BERT

Narrative creation: The narratives include six
sentences

B The first and second sentence provide the time, date, and

information regarding the crash location

®m  The third and fourth sentence ascertain the traffic
information — speed and AADT.

B The fifth sentence ascertains the weather conditions

B The last sentence describes traffic control facilities present

at the crash location,

o Processing pipeline: Narratives are tokenized,
embedded, and passed through BERT’s transformer
encoders and pooler to generate contextualized
representations for severity prediction.
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Model Architecture

Speed Limit Environmental Condition ... Light Road System
Condition
Narrative 40 rainy “ Daylight local road
Creation s N
On Friday, in October at approximately 15 o'clock, a collision occurred on a local road. The road had a Blacktop
surface with a 24-foot pavement width and a 10-foot right shoulder width..... The collision happened when the
weather was rainy, the road surface was wet, and it was Daylight. |
the road surface was wet
Tokenization the road surface was wet
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Methodology: BERT/Random Forest Hybrid Model

o  Class Imbalance

B Majority of records are “no injury”, leading to biased predictions in standard classifiers

B Even when a crash is severe, its probability may be lower than “no injury” due to imbalance
o  Tokenization & Embedding with BERT

®  Use BERT to tokenize crash narratives

B Generate class probability scores (e.g., for no injury, minor injury, serious injury, fatal)
o Post-BERT Classification with Random Forest

B Use BERT’s output probability distribution

B Train a Random Forest classifier on these probability vectors to improve classification of minority classes

No Injury = %70 ]\

Narrative ' Minor Injury = %25

Random Forest

Injury

Crash Severity = Minor }

Fatal = % 5
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Preliminary Results

) Bert: F1 score Accuracy Precision Recall

Under sampling after narrative creation

0.37949 0.38594 0.3776 0.38594

Under sampling Before narrative creation

0.36521 0.3884 0.36975 0.3884

Over sampling after narrative creation

0,375 0.39006 0.37892 0.39006

Over sampling Before narrative creation

(A3 7797 0.38982 (1887537 0.38982

e Hybrid model

Best F1 score Best Accuracy Best Precision Best Recall

0,853 0.66 0.33 0.835)

New Jersey Institute
of Technology IntelentTrans porationystems



What's Ahead

® |ntegrate Spatial Imagery

o Extract location-specific features from satellite or street-level images to generate
contextual descriptions (e.g., "intersection near a school zone")

® [ncorporate Land Use and Environmental Data

o Use land use type (e.g., residential, commercial) and surrounding features (e.g.,
parks, railroads) to enrich narrative content

e |[everage Decoder-Based Language Models

o Use decoder architectures (e.g., GPT-style models) to generate more realistic and
diverse narratives in natural language
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