

DETERMINING KEY FACTORS AFFECTING THE INJURY SEVERITY OF INTERSECTION RELATED CRASHES IN NEW JERSEY

Deep Patel Graduate Research Assistant Rowan University Ruqaya Alfaris Graduate Research Assistant Rowan University Mohammad Jalayer, Ph.D. Associate Professor Rowan University

25th Annual NJDOT Research Showcase

October 25th, 2023

Overview

- Introduction
- Research Objectives
- ✤ Literature Review
- Collect/Analyze Relevant Data
- Methodology
- Results
- Conclusion
- Recommendation

2015.

Introduction

✤ According to the Federal Highway Administration

(FHWA), more than 50 percent of combined fatal and injury crashes occur at or near the intersection.

✤ Furthermore, based on New Jersey State Police, a

total of 146 fatal crashes occurred at intersections in

New Jersey in 2019, indicating a 39% increase

(Source: Patel et al., 2023)

compared to the 105 fatal crashes that happened in

Introduction

Introduction

THE DEADLIEST INTERSECTION IN THE COUNTRY IS IN NEW JERSEY (Surce New Jersey 10.5) (Surce New Jersey 1

STUDY: SIX OF THE TOP 30 DEADLIEST INTERSECTIONS IN AMERICA ARE IN NJ

Trenton, New Jersey intersection among the deadliest in the nation

Research Objectives

- * To identify significant contributors to the injury severity of intersection-related crashes
- * To provide essential insights to professionals, and policymakers based on the research

findings

Literature Review

A total of **32** studies were reviewed to identify the primary **contributing factors to injury severity**, assess the utilization of **machine learning models**, and determine **limitations and research gaps** in prior investigations.

Literature Review

Collect/Analyze Relevant Data

* Five years (2015-2019) of crashes that

occurred at the intersection of the state of New Jersey

was gathered

injury.

✤ The final dataset includes 234,192 crash records,

including 2,180 fatal and serious injury; 70,013

possible and minor injury; and 161,999 no apparent

Collect/Analyze Relevant Data

Methodology

Methodology

Model Evaluation

Methodology

Results

Model Performance Evaluation

Models	Accuracy	Recalls	Precision	F-score
XGBoost	0.73	0.41	0.61	0.42
LightGBM	0.73	0.40	0.60	0.40
CatBoost	0.73	0.41	0.62	0.41
Random Forest	0.70	0.41	0.49	0.42
Ensemble Model	0.74	0.41	0.66	0.42

Results

Co	onfusion Ma	trix	XGBoost					R	andom Fore	est
:	Fatal and Incapacitating Injury	19 (0.04%)	259 (0.55%)	148 (0.32%)			Fatal and Incapacitating Injury	15 (0.03%)	271 (0.58%)	140 (0.30%)
tual Class	Non-Incapacitating Injury	27 (0.06%)	3126 (6.67%)	10772 (23.00%)		tual Class	Non-Incapacitating Injury	34 (0.07%)	4414 (9.42%)	9477 (20.23%)
Act	Possible Injury	6 (0.01%)	1258 (2.96%)	31224 (66.66%)		Ac	Possible Injury	16 (0.03%)	4104 (8.76%)	28368 (60.56%)
		 Fatal and Incapacitating Injury 	Non-Incapacitating Injury	Possible Injury				Fatal and Incapacitating Injury	Non-Incapacitating Injury	Possible Injury
		Pro	edicted Clas	s	C	3.		Pro	edicted Clas	s

Results

Confusion Matrix

Results

Confusion Matrix		Ensemble Model			
	Fatal and Incapacitating Injury	20 (0.04%)	254 (0.54%)	152 (0.32%)	
tual Class	Non-Incapacitating Injury	15 (0.03%)	3210 (6.85%)	10700 (22.84%)	
Act	Possible Injury	1 (0.00%)	1268 (2.71%)	31219 (66.65%)	
		Fatal and ncapacitating Injury	Non-Incapacitating Injury	Possible Injury	
	un te.dt	I Pre	edicted Clas	\$	

Results

Shapley Additive Explanations (SHAP)

Results

Shapley Additive Explanations (SHAP) : Crash Type

Results

Shapley Additive Explanations (SHAP) : Traffic Control System

Conclusion

crash severity.

- The Ensemble Model achieved the highest accuracy of 0.74, demonstrating its effectiveness in predicting crash severity accurately
- SHAP analysis highlighted the importance of various factors, including angle crash type, higher speed limits, and temporal variables like seasons (summer and fall) and time of day (between 12:01 and 18:00 hours), in increasing the severity of injuries for the intersections related crashes
- These findings offer valuable guidance for transportation safety professionals, enabling the development of targeted strategies for education, enforcement, and engineering to reduce intersection

Recommendation

Recommendation

Recommendation

- Targeted Enforcement: Implement focused law enforcement efforts during specific crashprone months and hours, especially during summer and fall and between 12:01 and 18:00, to ensure smoother traffic flow and decrease crash rates.
- Educational Initiatives: Develop educational programs, particularly targeting older drivers, to provide updates on the latest intersection advancements and safety measures. Increasing awareness about the dangers of distracted driving near intersections should be a key component

needed.

Recommendation

- Exploring Advanced Models: Future research should explore the use of more advanced machine learning models, including deep learning techniques, to potentially achieve even higher accuracy rates in predicting intersection crash severity.
- Enhanced Data Collection: Collect more detailed data, including signal phase information, average cycle times for traffic lights, lane-specific location information, and real-time vehicle speeds before the time of the crash. This enhanced data can provide deeper insights into the factors contributing to intersection-related crash severity.
- Continuous Monitoring: Establish a system for continuous monitoring and evaluation of intersection safety measures to ensure their effectiveness over time and adapt them as

Deep Patel Graduate Research Assistant Rowan University pateld80@rowan.edu

Ruqaya Alfaris

Graduate Research Assistant Rowan University alfari24@rowan.edu

Mohammad Jalayer, Ph.D.

Associate Professor Rowan University jalayer@rowan.edu