

Center for Advanced Infrastructure and Transportation

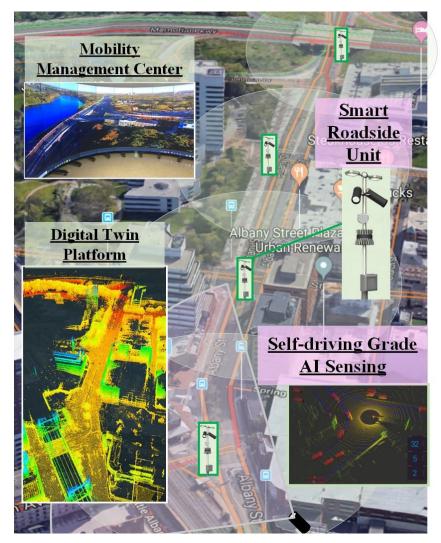
A Vehicle Trajectory Stitching and Reconstruction Method for Digital Twin Applications with High-Resolution Roadside LiDAR Data

Anjiang Chen

Graduate Research Assistant

Department of Civil and Environmental Engineering

Rutgers, the State University of New Jersey



Background

DataCity Smart Mobility Testing Ground Project

- Self-Driving-Grade Roadside Sensing and Computing Infrastructure
- Smart Mobility Management Center
- **Digital Twin** platform to support early-stage R&D
- V2X Smartphone-based Community Mobility Applications
- Smart Mobility Data Hub Application
- Technology Testing and Certification Center
- Mobility Technology Breeding Ground

Background - Self-Driving-Grade Roadside Sensor

Sensor:

Velodyne Alpha Prime VLS-128 Beam

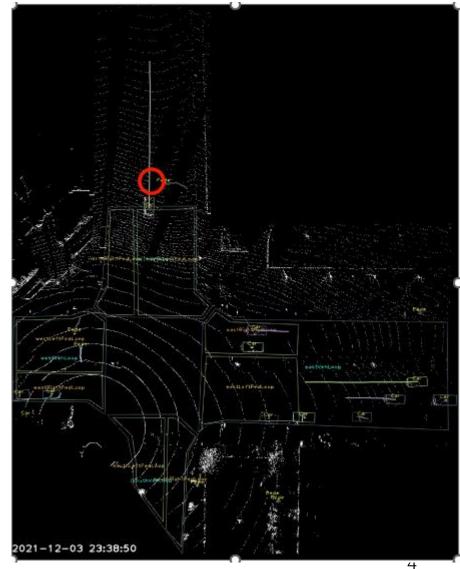
Edge Compute: NVIDIA Jetson Xavier: LiDAR Analytics

{'MessageFrame': {'messageId': '20', 'value': {'BasicSafetyMessage': {'coreData': {'size': {'width': 2.220302 3433685303, 'length': 4.930622577667236}, 'msgCnt': 'Your value', 'lat': 40.49720625474223, 'long': -74.44259 494976781, 'elev': 'Your value', 'speed': 'Your value', 'heading': 0.014768261462450027, 'accelSet': {'long': '2001', 'lat': '2001', 'vert': '-127', 'yaw': '0'}, 'id': 'Your value', 'secMark': datetime.datetime(2023, 1 a, 23, 13, 59, 11, 838864), 'accuracy': {'orientation': '65535', 'semiMajor': '255', 'semiMinor': '255'}, 'an gle': '127', 'transmission': {'unavailable': ''}, 'brakeBoost': {'unavailable': ''}, 'auxBrakes': {'unavailable': ''}, 'wheelBrakes': '00000'}}}}

{'MessageFrame': {'messageId': '20', 'value': {'BasicSafetyMessage': {'coreData': {'size': {'width': 2.307398
796081543, 'length': 5.115557670593262}, 'msgCnt': 'Your value', 'lat': 40.49745041021492, 'long': -74.442330
18805254, 'elev': 'Your value', 'speed': 'Your value', 'heading': 1.5648047924041748, 'accelSet': {'long': '2
001', 'lat': '2001', 'vert': '-127', 'yaw': '0'}, 'id': 'Your value', 'secMark': datetime.datetime(2023, 10,
23, 13, 59, 11, 838864), 'accuracy': {'orientation': '65535', 'semiMajor': '255', 'semiMinor': '255'}, 'angle
': '127', 'transission': {'unavailable': '}, 'brakes': {'traction': {'unavailable': '}, 'abs': {'unavailable': '}, 'auxBrakes': {'unavailable': '}, 'w
heelBrakes': '00000'}}}}

('MessageFrame': {'messageId': '20', 'value': {'BasicSafetyMessage': {'coreData': {'size': {'width': 2.193339 3478393555, 'length': 4.749076843261719}, 'msgCnt': 'Your value', 'lat': 40.497337860133634, 'long': -74.4419 2254415628, 'elev': 'Your value', 'speed': 'Your value', 'heading': 0.02185274474322796, 'accelSet': {'long': '2001', 'lat': '2001', 'vert': '-127', 'yaw': '0'}, 'id': 'Your value', 'secMark': datetime.datetime(2023, 1 a, 23, 13, 59, 11, 838864), 'accuracy': {'orientation': '65535', 'semiMajor': '255', 'semiMinor': '255'}, 'an gle': '127', 'transmission': {'unavailable': ''}, 'brakes': {'traction': {'unavailable': ''}, 'abs': {'unavail able': '}, 'scs': {'unavailable': ''}, 'brakeBoost': {'unavailable': ''}, 'auxBrakes': {'unavailable': ''}, 'wheelBrakes': '00000'}}}

Background - Self-Driving-Grade Roadside Sensor


Count Speed

Metric Gan/Ni

Conflicts

Overview Log Out

Active 🚳

Active 🚳

Active .

Active .

Active .

Active 🔘

Active .

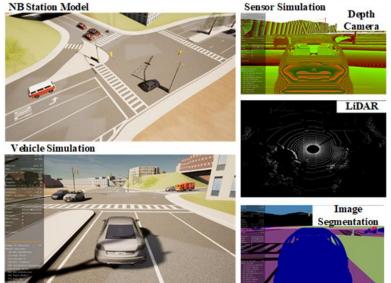
rench St & Joyce Kilmer, New Brunswick, NJ, USA

French St & Paterson, New Brunswick, NJ, USA 607.30.46, 000005

French St & Suydam St, New Brunswick, NJ, USA

Albany_George, New Brunowick, NJ, USA

Memorial Pkwy, New Brunswick, NJ, USA


Easton Ave & Albany St, New Brunswich, NJ, USA Burnet st, New Brunswick, NJ, USA

Albany_George, New Brunswick, NJ, USA BCT, 30, 40, 0003015

Background - Digital Twin platform

- **Traffic Digital Twin Model**: 3D virtual replications of the vehicle, pedestrian, infrastructure, and environmental dynamics of real-world transportation systems
- CARLA Emulator: Open-source simulation platform supports of sensor suites, environmental conditions, full control of all static and dynamic actors, maps generation
- Digital Twin Input: Virtual world static assets, High quality traffic data
- Potential Application: Automated Technology, Drive Behavior

Research Problem

Trajectory Data Quality Issues:

- Blind Spot
- Unstable Frames
- Inconsistent Headings
- Missing trajectory segments

Issues Reflected in the Digital Twin

- Vehicles not facing correct travel directions
- Disappearing, or switching appearances
- Potential Safety issue when deploying CAV

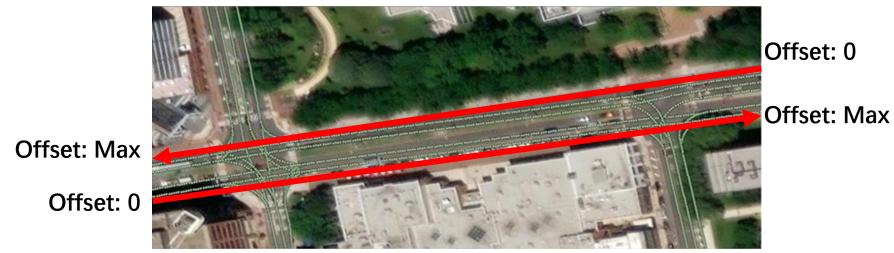
Methodology - Static

LiDAR location and orientation

LiDAR scanning File (Dr. Gong's group contribution)

Infrastructure and road network reconstruction

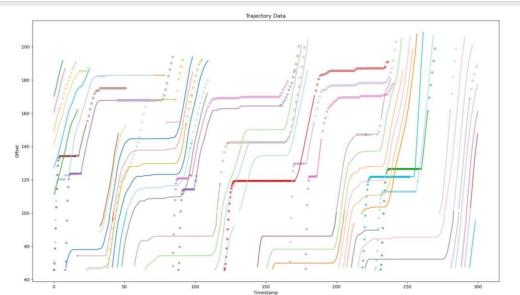
Centerline points of roadway network

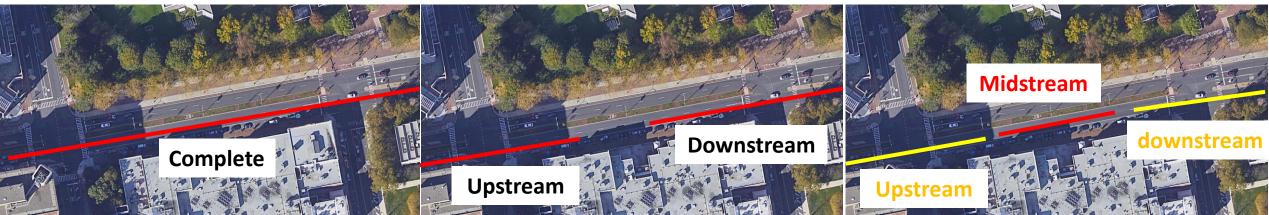

3D virtual world

Methodology - Trajectory

STEP ONE: Waypoints in the Centerline Map

STEP TWO: Vehicle Trajectory Point Projection


Trajectory Point $(x, y, t) \rightarrow$ **Trajectory Point**(S, t, lane information)



Methodology - Trajectory

STEP THREE: Vehicle Trajectory Stitching and Reconstruction

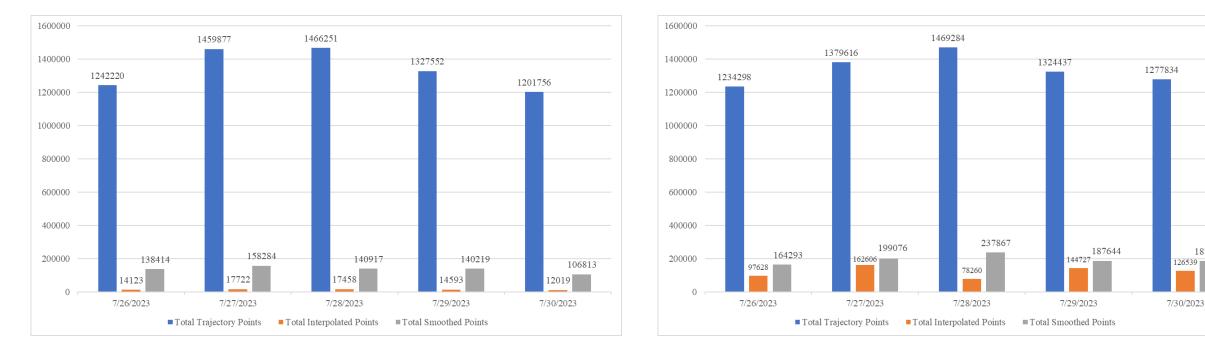
- > Complete Trajectory
- > Upstream Trajectory
- > Downstream Trajectory
- Midstream Trajectory

Trajectory Stitching, Reconstruction, Interpolation: Small time interval Predication based on timestamp gaps, offset gaps, instantaneous velocity

Methodology - Control

STEP FOUR: Vehicle Dynamic Control Method

For each time frame in Digital Twin Model, update the spatial information of each vehicle object


Time: N+0.1

Time: N

Trajectory Point Processing Percentage

Interpolation: Missing/Disappearing trajectory point caused lost frame and mis-tracking

Smooth: Speed distortion (unreasonable sudden change) and incorrect position (back-and-forth wiggling detection of stop vehicle)

Albany @ George Intersection

Albany @ Neilson Intersection

187209

Trajectory Stitching and Reconstruction

D D 0ffset Offset Offset Α 11/11 ó Timestamp Timestamp

Trajectory Spatial-temporal Diagram (One lane)

After Processed


Before Processed

Trajectory Stitching and Reconstruction

Before Processed

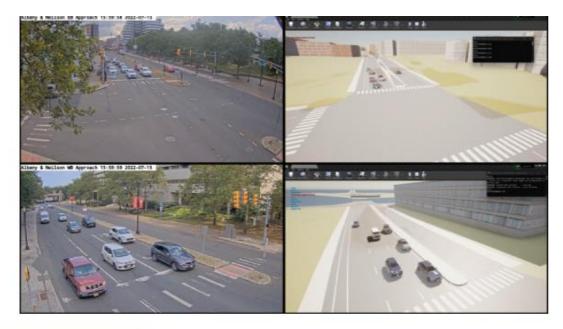
After Processed

Trajectory Stitching Result Analysis

Rapid ID switching count: an evaluation index for detecting broken trajectories

ID Switching Count Before and After Processing at Two Intersections

Intersection		06/26/23	06/27/23	06/28/23	06/29/23	06/30/23	Average
Albany@ George	Before	2578	2804	3035	2916	2566	2780
	After	162	136	240	178	126	168
	Reduction	93.7%	95.1%	92.1%	93.9%	95.1%	94.0%
Albany@ Neilson	Before	4129	4780	4547	4706	4729	4578
	After	266	324	327	312	320	310
	Reduction	93.6%	93.2%	92.8%	93.4%	93.2%	93.2%



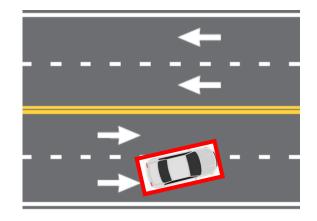
14

Digital Twin Model Demonstration

Remaining Works

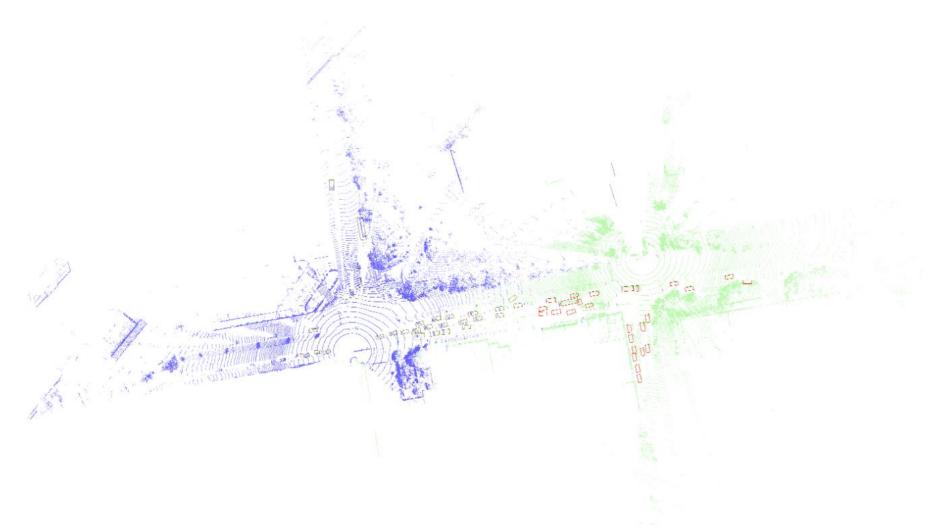
Pedestrian in Digital Twin Model

- Same issue as Vehicle, but more complicated
- ➢ 3D modeling, such as using skateboard, Scooter



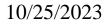
More Accurate Lane Projection

- More powerful on lane changing behavior detection
- More flexible for arterial streets


Optimization the latency in Digital Twin Model

- High Hardware Requirement
- ➢ GPU Consuming

Future Work



Future Work

