DEVELOPMENT AND ANALYSIS OF LOW EMBODIED CARBON CONCRETE MIXTURES FOR USE IN TRANSPORTATION APPLICATIONS

Matthew P. Adams, Matthew J. Bandelt, Yan Zhang J.A. Reif, Jr., Department of Civil and Environmental Engineering New Jersey Institute of Technology

NJDOT Research Showcase Infrastructure Breakout Session West Windsor, NJ October 25, 2023

RESEARCH COLLABORATORS

- Hao Wang
- Wei Huang

- Reza Moini
- Shashank Gupta

INTRODUCTION

- Building materials and construction account for 11% of global CO₂ emissions
- Concrete production is responsible for 8% of global CO₂ emissions

Global CO, Emissions by Sector

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

SOURCE OF EMBODIED CARBON

- Reinforced concrete has a low embodied carbon per unit volume
- Scale of production of concrete is the main cause of the high level of carbon emissions associated with concrete
- Over 400,000,000 yd³ produced in US each year, or ~ 615 Hoover Dams

EMBODIED CARBON IN CONCRETE

- >90% embodied CO₂ in a portland cement mixture is from cement production
- Mostly from the processing of limestone
 - Quarrying & transport
 - Grinding & preparation of raw materials
 - Cooling, grinding, mixing

Embodied CO₂ Allocation by Cement Production Process

RESEARCH PROGRAM BACKGROUND

- The Port Authority is committed to meeting the goals of the Paris Climate Agreement to reduce greenhouse gas emissions by at least 35% by 2025 and 80% by 2050
- The Port Authority is a leader in sustainable construction and design, and should maintain that status
- Engaged our research team to help meet the objectives of the Low Carbon Concrete Pilot Program

LOW CARBON CONCRETE PILOT PROGRAM

- Task A: Analyze and calculate the current state of embodied carbon in Port Authority concrete mixtures
- Task B: Determine proper application of locally available mixture design and technologies with lower embodied carbon
- Task C: Understand the performance of potential low carbon concrete materials through performance testing
- Task D: Confirm field performance of low embodied carbon concrete systems through pilot field studies and performance monitoring

TASK B: OVERVIEW

Objective

Develop and propose 20 mixtures using Identify key areas of improvement using LECC technology database analysis **Study LECC Aggregate Solutions** Determine potential GWP of proposed Study and Assess Non-Aggregate LECC Material Components mixtures **Develop Optimized Aggregate Gradations Develop and Select LECC Mixture Designs** Technologies must be market ready Finalize Embodied Carbon of Selected LECC Mixtures **Propose LECC Mixtures to Port Authority**

Methodology

TASK B: KEY AREAS FOR IMPROVEMENT

TASK B: EXAMPLES OF INCREASING SCM USAGE

Determining allowable fly ash content

TASK B: EXAMPLE OF CEMENT REDUCTION

TASK B: EXAMPLE OF CEMENT REDUCTION

Optimizing aggregate particle packing

TASK B: PROPOSED MIXTURES

- Higher SCM contents provide the biggest GWP improvements
- Aggregate optimizations provide significant GWP reductions

TASK C: ANALYSIS AND TESTING OF MIXTURES

Objective

- Complete laboratory testing to assess suitability of proposed lowcarbon concrete mixtures for use in Port Authority projects
- Recommend potential mixtures for pilot testing in field trials

Cast trial mixtures to final mixture designs

Methodology

Cast finalized mixtures and measure fresh properties

• Workability, Setting time, Air content

Measure hardened properties of systems

- Strength
- Freeze-thaw resistance, Drying shrinkage, Permeability

Analyze performance and recommend trial systems for field testing

TASK C: FRESH PROPERTIES TESTING – SETTING TIME

Setting Time – Construction timelines and labor requirements

- Acceptable initial setting times for all mixtures
- Final set times ran long on systems with fly ash and ground glass pozzolan
- Could use accelerators to shorten the setting time of slow setting systems

10 hours – Recommended upper limit for final setting time

3.5 hours – Recommended lower limit for initial setting time

TASK C: MECHANICAL PERFORMANCE

Compressive Strength

- All systems met a minimum of 4000 psi compressive strength by 28 days
- Fly ash and ground glass pozzolans may cause issues for rapid construction
- GGP, high slag, and ternary blendshad highest long-term compressive strengths

TASK C: DURABILITY PERFORMANCE

Permeability – Reinforced concrete exposed to seawater or deicing salts

- Lower quality limit of 1200 coulombs passed (maximum) after accelerated curing at 28 days
- More charge passed indicates likelihood of faster corrosion
- Several systems performed well.

TASK C: OVERALL SYSTEM PERFORMANCE

Performance	Mixtures																	
Criteria	PC	30F	40F	50F	50S	60S	65S	77S	30GGP	30F/OA	40F/OA	50S/OA	60S/OA	50S/PLC	50S/RCA	38S/38F-Tern	50S/15GGP-Tern	CSA
Initial Setting Time	\checkmark	n/a																
Final Setting Time	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	X	X	n/a							
28-Day Compressive Strength	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
Flexural Strength	\checkmark	Х	Х	х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х
Shrinkage (0.04% limit)	Х	х	\checkmark	\checkmark	Х	х	Х	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	Х	х	X	x	\checkmark
Freeze-Thaw Resistance	\checkmark	Х	Х	\checkmark	Х													
Permeability (Accelerated Cure)	X	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	Х	х	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark
Number of Criteria Met	5	5	6	6	5	6	6	7	5	4	3	5	6	6	5	5	5	3

NEXT STEPS

Pilot program

- $_{\circ}$ 3 field trials of tested mixtures
- Exterior concrete exposed to deicing salts
- Long-term monitoring of systems
 - Cracks
 - Scaling
 - Delamination
 - Corrosion

ACKNOWLEDGEMENTS

Financial Support

Material Suppliers

CONCRETE . BLOCK . SAND

Center for Advanced Infrastructure and Transportation

THANK YOU/QUESTIONS

EXTRA SLIDES FOR QUESTION PERIOD

Mixtures Tested for Performance

Technologies Assessed

Mixture ID	Short ID	Description	Mixture ID	Short ID	Description	
PC	PC	Baseline 100% portland cement binder mixture	FA_40%_OA	40F/0A	50% fly ash binder mixture utilizing particle packing theories to increase the volume of aggregates	
FA_30%	30F	Baseline 30% fly ash binder mixture	SLAG_60%	60S	60% slag binder mixture	
SLAG_50%	50S	Baseline 50% slag binder mixture	SLAG_60%_OA	60S/OA	60% slag binder mixture utilizing particle packing theories to increase the volume of aggregates	
FA_30%_OA	30F/OA	30% fly ash binder mixture utilizing particle packing theories to increase the volume of aggregates	SLAG_60%_CO2	60S/CO2	60% slag binder mixture with mineralized carbon dioxide	
FA_30%_CO2	30F/CO2	30% fly ash binder mixture with mineralized carbon dioxide	SLAG_77%	77S	77% slag binder mixture	
SLAG_50%_OA	50S/OA	50% slag binder mixture utilizing particle packing theories to increase the volume of aggregates	SLAG_65%	65S	65% slag binder mixture	
SLAG_50%_RCA	50S/RCA	50% slag binder mixture utilizing recycled concrete as coarse aggregates	GGP_30%	30GGP	30% ground glass pozzzolan binder mixture	
SLAG_50%_PLC	50S/PLC	Binder mixture made up of 50% slag and 50% portland limestone cement	Ternary_FA_SLAG	38S/38F-Tern	Ternary binder system using 38% slag, 38% fly ash, and 25% portland cement	
SLAG_50%_CO2	50S/CO2	50% slag binder mixture with mineralized carbon dioxide	Ternary_SLAG_GGP	50S/15GGP-Tern	Ternary binder system using 50% slag, 15% ground glass pozzolan, and 35% portland cement	
FA_40%	40F	40% fly ash binder mixture	CSA	CSA	Rapid setting mixture using 100% calcium sulfoaluminate cement binder	
FA_50%	50F	50% fly ash binder mixture			bilder	

Fresh Property Performance of Concrete Systems

- Workability (slump) Constructability and labor implications
 - Workability varied significantly across systems and within separate batches for each system
 - Higher SCM content typically needed additional superplasticizer
 - Good workability achieved

• Laboratory dosage rates may not yield same results in field

Fresh Property Performance of Concrete Systems

Air content – Protection against freezing and thawing

Ę

- Each batches of all systems met Port Authority LQL for air content (5%) but some exceeded the UQL (8%) for a ³/₄ in. nominal aggregate (#57 stone)
- Targeted air content was difficult to achieve particularly with slag mixtures (common issue)
- Laboratory dosage rates do not reflect field dosage rates

Durability Property Performance of Concrete Systems

- Drying shrinkage Long-term performance indicator –
- Cat. I (rapid setting) LQL: 0.03% maximum
- Cat. II, II, IV, V LQL: 0.04% maximum
- No systems conformed to cat. I LQL
 - None are rapid setting
- Several mixtures met 0.04% maximum shrinkage LQL
- Port Authority should examine other options for reducing shrinkage in LCC systems
 - Shrinkage reducing admixtures
 - Internal curing

Ę

Longer curing

	Eree Shrinkage	Port Authority Spec Limit				
Mixture ID	at 20 Davia (%)	Exceeded				
	at 28 Days (%)	Cat. I	Cat. II, III, IV, V			
PC	0.0407	Х	Х			
30F	0.0425	Х	Х			
40F	0.0390	Х				
50F	0.0385	Х				
50S	0.0570	Х	х			
60S	0.0462	Х	х			
65S	0.0527	Х	х			
775	0.0387	Х				
30GGP	0.0343	Х				
30F/OA	0.0400	Х				
40F/OA	0.0387	Х				
50S/OA	0.0548	Х	х			
50S/RCA	0.0572	Х	х			
50S/PLC	0.0588	Х	х			

Durability Property Performance of Concrete Systems

Freeze-thaw resistance – Exterior concrete requirement

Ę

- Requirement: Systems withstand 300 cycles of accelerated freezing and thawing
- Most systems met freeze-thaw requirements
- Ground glass pozzolan may be sensitive to type of air entrainer used despite adequate air
- Further studies needed to understand failures

Mixture ID	Relative Dynamic E Below 80% of Starting Value	Number of Cycles at Failure	Air Content of Batch (%)
PC			5.5
30F			5.5
40F			7.0
50F			8.0
50S			8.0
60S			9.0
65 S			5.5
77S			7.0
30GGP	Х	60 Cycles	6.0
30F/OA	Х	280 Cycles	5.8
40F/OA			7.0
50S/OA			7.0
50S/RCA			7.0
38S/38F-Tern			7.8