ADVANCED REINFORCED CONCRETE MATERIALS FOR TRANSPORTATION INFRASTRUCTURE

Seyed Masoud Shirkhorshidi, Jin Fan

Matthew J. Bandelt, Matthew P. Adams

J.A. Reif, Jr., Department of Civil and Environmental Engineering New Jersey Institute of Technology

ABOUT US

Matthew P. Adams, Ph.D., F.ACI

- Ph.D., Oregon State University
- Chemical and mechanical characterization of infrastructure materials
- Accelerated laboratory and field testing of infrastructure materials

Matthew J. Bandelt, Ph.D., P.E.

- Ph.D., Stanford University
- Experimental behavior and design of structural connections and components with innovative construction materials
- Computational modeling and testing of emerging materials

- Experimental testing facilities are used for testing material durability and basic mechanical properties
- Equipment includes:
 - 700 kip compression testing machine
 - o 55 kip tensile testing machine
 - Pore-solution extractor
 - 3 high temperature ovens
 - o Sieve shaker
 - Dry-curing and moist curing rooms
 - o 6 ft³ rotary drum mixer
 - 9 ft³ high shear planetary mixer
 - Automatic cylinder end grinder
 - o Freeze/Thaw Cabinet
 - Corrosion testing Equipment

 Experimental testing facilities are used for measuring the chemical composition and performance of cement based materials

Equipment includes:

- Mounting and polishing equipment for advanced microscopic analysis
- Sample preparation for ICP-OES
- Sample preparation for XRD

- Experimental testing facilities are used for testing structural components to various loading conditions
- Equipment includes:
 - Three servo-hydraulic actuators capable of fatigue testing at 200, 100, and 55 kip capacities
 - 16 channel high speed data acquisition system capable of recording at 1000hz
 - 3000 ft² high bay space for fabricating elements

- Computational workstation facility used to validate experimental findings and perform parametric studies
- Capabilities include:
 - Deterioration modeling
 - Structural simulation
 - Young hardening concrete analysis
 - Soil/structure interaction

OUTLINE

Motivation and background information

Experimental Program

Results of the Study

Numerical Framework

Conclusions and future work

MOTIVATION AND BACKGROUND INFORMATION

DURABILITY ISSUES

Corrosion

ethz.ch

Salt Scaling

u-cart.ca

Shrinkage

Freeze-Thaw

theconstructor.org

publish.illinois.edu

DETERIORATION MECHANISMS

Drying shrinkage happens due to moisture loss and moving water to empty capillaries and out of concrete

Salt scaling mechanism:

Original Concrete Volume

www.giatecscientific.com

- Deicing salts increase number of freeze-thaw cycles and osmotic pressure that occur during freezing
- Salt attracts water and more water to freeze
- Salt cause top layer to thaw and creates localized temperature differential and impose stress to top layer

DETERIORATION MECHANISMS

Corrosion Damage Mechanism

12

WHAT HAPPENS IN CORROSION

Anodic Reaction: $2Fe \rightarrow 2Fe^{2+} + 4e^{-}$

Cathodic Reaction: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Total Reaction: $2Fe + 2H_2O + O_2 \rightarrow 2Fe(OH)_2$

Ahmed, 2003

DUCTILE CONCRETE MECHANICAL BEHAVIOR

UHPC – f_c = 20,000 psi; f_t = 1,100 psi; ε_{tp} = 0.2%

ECC – f_c = 8,000 psi; f_t = 400 psi; ε_{tp} = 1%

HyFRC – f_c = 6,500 psi; f_t = 275 psi; ε_{tp} = 0.3%

Generally do not spall and retain residual strength in compression

MICROCRACKING BEHAVIOR IN DUCTILE CONCRETE SYSTEMS

Li, 2003

DUCTILE CONCRETE MATERIALS

Binder

(Cement, Fly Ash, Silica Fume, Glass Quartz)

Fine Aggregate (Sand)

Water and Admixtures

Coarse Aggregate (Crushed Stone)

UHPC - Ultra high performance concrete

ECC - Engineered cementitious composite

HyFRC - Hybrid fiber-reinforced concrete

Durability testing example – corrosion benchmarking

Other areas of interest:

18

EXPERIMENTAL PROGRAM

DURABILITY OF DUCTILE CONCRETE SYSTEMS

Drying shrinkage (ASTM C157)

Freezing and thawing (ASTM C666)

Salt scaling (ASTM C672)

COMPARATIVE STUDY OF THE CHLORIDE PERMEABILITY AND CORROSION PERFORMANCE OF DUCTILE CONCRETE SYSTEMS

Accelerated corrosion (ASTM G109)

Chloride profiling and coefficient of chloride diffusion (ASTM C 1152)

matslob

aboratory at NJI1

Rapid chloride penetration test (ASTM C1202)

CONCRETE MATERIALS

Two ordinary concrete systems

 Self consolidating concrete (SCC P)
 High performance concrete (HCP)

- Three ductile concrete systems
 ECC
 - HyFRC
 - UHPC

REINFORCEMENT MATERIALS (G109 ONLY)

- Five types of reinforcement
 - o Black
 - Epoxy Coated
 - o Galvanized
 - ChromX
 - Stainless Steel
- Additional set with pre-damaged reinforcement
 Epoxy coated

RESULTS

FRESH AND HARDENED PROPERTIES

Concrete Type	Slump/Flow (in)		
HPC	3.5		
SCC P	20.5		
HyFRC	21		
ECC	7.5		
UHPC	8.5		

Concrete Type	Type Air Content (%)		
HPC	3.5		
SCC P	4		
HyFRC	7.5		
ECC	5		
UHPC	5		

25 ^N ,

DRYING SHRINKAGE

DRYING SHRINKAGE

- Ductile concrete systems tend to have higher shrinkage
 - Higher cement contents
 - ASTM C157 does not necessarily measure cracking propensity
- UHPC has lowest drying shrinkage
 - Test does not capture autogenous shrinkage, which is typically a bigger issue for UHPC

FREEZE-THAW

Relative Modulus of Elasticity Results

28

SPECIMENS AT THE END OF THE TEST

FREEZE THAW

Concrete Type	HPC	SCC P	HyFRC	ECC	UHPC
Durability Factor	25.1	3.7	21.3	76.3	100

- Ordinary concrete was difficult to air entrain
- HyFRC performed poorly despite adequare air entraining
- ECC and UHPC met requirements

SALT SCALING

NUMERICAL SCALE RATINGS543210

AVERAGE SALT SCALING RATING

32

SPECIMENS AFTER 50 CYCLES

materials and structures

33 NJIT

EFFECT OF WIRE BRUSHING

34

SCALING DAMAGE ON ECC

A different type of damage was observed in ECC

TAKEAWAYS OF DURABILITY TESTING OF DUCTILE CONCRETE SYSTEMS

- UHPC had the best durability performance in ductile concrete systems
- Ductile concrete systems improve the durability of reinforced concrete systems
- Scaling tests need reconsideration for evaluation of ductile concrete systems in terms of surface finishing, evaluation method and rating criteria
- Corrosion testing is needed to investigate the improvements in corrosion performance of ductile concrete systems

ASTM G109 CORROSION TEST METHOD

- Accelerated corrosion test
- Apply wetting and drying cycles every two weeks
- Measures corrosion current

37

 Modification: Applied preloading to develop precracks

mats

aboratory at N.I

CORROSION TESTING PLAN

Concrete Rebar	NJ DOT HPC	NJ DOT SCC P	UHPC	HyFRC	ECC
Black	√ √	~	~	\checkmark	√ √
ECR	\checkmark	\checkmark	√ √	\checkmark	~
ECR- Damaged	√ √	~	~	~	~
ChromX	~	~	√ √	\checkmark	-
Galvanized	$\checkmark\checkmark$	\checkmark	-	-	-
Stainless Steel	\checkmark	\checkmark	-	-	-
✓ · Uncracked	✓ · Cracked				

38 ^N

CORROSION RESULTS OF UNCRACKED BEAMS

 No corrosion was observed in uncracked specimens with ordinary black reinforcement

CORRODED FIBERS AT THE SURFACE

 Corroded Fibers have no negative effect on the corrosion performance of reinforcement

CRACKING BEHAVIOR OF CONCRETE SYSTEMS

 Multiple macrocracking behavior was observed in ductile systems compared to big crack in HPC

CORROSION RESULTS OF CRACKED BEAMS

CORROSION IN CRACKED HYFRC

Specimen	Load (Kn)	Location 1	Crack Width (mm)	Location 2	Crack Width (mm)
HyFRC-Black-1	88	Center	0.1	Center	0.08
HyFRC-Black-2	88	Center	0.15	Center	0.2
HyFRC-Black-3	88	Center	0.2	Center	0.15

CORROSION IN ALTERNATIVE REINFORCEMENT (CHROMX)

CORROSION IN CRACKED HYFRC WITH CHROMX

Specimen	Load (Kn)	Location 1	Crack Width (mm)	Location 2	Crack Width (mm)
HyFRC-ChromX-1	88	Center	0.2	Center	-
HyFRC-ChromX-2	88	Center	0.12	Center	0.08 (Longitudinal)
HyFRC-ChromX-3	88	Center	0.04	Center	-

CORROSION IN ALTERNATIVE REINFORCEMENT (ECR)

Cracked Beams

CORROSION IN ALTERNATIVE REINFORCEMENT (GALVANIZED)

TAKEAWAYS OF CORROSION TESTING OF DUCTILE CONCRETE SYSTEMS AND ALTERNATIVE REINFORCEMENT

- Cracking affects the corrosion performance of ductile concrete systems
- Small cracks can be blocked by corrosion products and salt
- Longer time is needed for corrosion initiation in concrete systems and alternative reinforcement
- Chloride profiling measurements were done to evaluate the chloride penetration and corrosion resistance

CHLORIDE PROFILING

Rapid chloride penetration testing was done to compare the results with long term ponding test

RAPID CHLORIDE PENETRATION TESTING OF DUCTILE CONCRETE SYSTEMS

Rapid chloride penetration test (ASTM C1202)

 Rapid chloride penetration test has been widely used by department of transportation for concrete systems

Charge Passed (coulombs)	Chloride Ion Penetrability		
>4,000	High		
2,000-4,000	Moderate		
1,000-2,000	Low		
100-1,000	Very Low		
<100	Negligible		

RAPID CHLORIDE PENETRATION TESTING OF DUCTILE CONCRETE SYSTEMS

- No result was recorded for HyFRC due to testing device error (passing charges so quickly through fibers)
- Incorporation of fibers increased the passed charge in all concrete systems

Concepto Typo	Passed C	harged (Coul	ASTM C1202 Classification		
Concrete Type	Specimen 1	Specimen 2	Average	ASTIVI C1202 Classification	
HPC	381	385	383.00	Very Low	
SCC P	1,399	1,533	1,466.00	Low	
ECC	2,682	2,723	2,702.50	Moderate	
UHPC	177	210	193.50	Very Low	
HyFRC	N/A	N/A	N/A	N/A	
ECC No Fiber	2,382	2,347	2,364.50	Moderate	
UHPC No Fiber	16	17	16.50	Negligible	
HyFRC No Fiber	2,693	2,639	2,666.00	Moderate	

FAILED HYFRC SPECIMEN IN RCPT

 Charge passed through fibers quickly and corroded the fibers. Tests was stopped automatically after few seconds.

TAKEAWAYS OF RAPID CHLORIDE PENETRATION TESTING OF DUCTILE CONCRETE SYSTEMS

- Same trend was observed in RCPT of ductile concrete systems compared to chloride profiling results
- RCPT could not show the extent of difference between results with chloride profiling
- Fibers changed the RCPT results in ductile concrete systems

NUMERICAL FRAMEWORK

SERVICE LIFE EVALUATION METHODS

- Two ways to evaluate the service life: experimental & numerical
- Experimental :
 - ✤ accurate
 - Intuitive

- Numerical:
 - ✤ cost efficient
 - ✤ time efficient
 - easily extended
 - to various scenarios

GAPS IN CURRENT NUMERICAL MODELING

COUPLING EFFECTS AND TIME-DEPENDENT EFFECTS

- Testing and simulation standards often treat each form of damage in isolation
- In practice there is a coupling of damage which accelerates deterioration

- The benefits of new concrete systems may be more apparent when studied in light of coupled damage
- The boundary conditions are time-dependent, not stationary

PROPOSED MODELING FRAMEWORK

- Consider initial structure status
- Couple material ingress with damage conditions
- Time-dependent: updates input parameters at each time step
- Connect all the stages in corrosion progress

PROPOSED MODELING FRAMEWORK

References: Fan et al. (2022).

CASE STUDY EXAMPLE

- Comparison analysis of UHPC and RC bridge deck

ENVIRONMENTAL CONDITIONS

- Source chloride: deicing salt; Temperature varies
- Humidity is constant (~70%) in NJ

Source chloride profile of the deicing salt and temperature fluctuation

References: Cheung et al. 2009.

STRUCTURAL MODELING SET UP

- Symmetrical geometry
- Original deck thickness 250 mm

INITIAL CRACKING

- Load-deformation before corrosion
- UHPC is half size, redu from 250 mm to 125 mm €
- Cover depth of UHPC was also reduced from
 63 mm to 25 mm

IMPACTS OF CRACKING ON CHLORIDE PROFILES

 Damage conditions and chloride contour after 30 years of de-icing exposure

DETERIORATIONS

- Cracking patterns before and after corrosion
- Distributed fine cracks in UHPC, localized major cracks in RC

DETERIORATIONS

Condition rating=% area in severe×0+% area in poor×40+% area in fair×70+% area in sound×100

Principal tensile strain contour of UHPC and normal strength concrete

TAKEAWAYS OF NUMERICAL MODELING FRAMEWORK

 The multi-physics time-dependent numerical approach is effective in service life evaluation

- UHPC bridge deck experienced slower deterioration under same traffic load and environmental conditions
- UHPC becomes cost-effective compared to RC in a 50 years service life period

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- UHPC had the best durability performance between ductile concrete systems
- More cementitious materials in ductile concrete systems increases drying shrinkage
- Fibers help to improve the durability of ductile concrete systems
- There is a direct relationship between corrosion intensity and crack width in ductile concrete systems

CONCLUSIONS

- Ductile concrete systems have different chloride diffusion behavior
- Fibers affect the RCPT results in ductile concrete systems
- RCPT cannot reflect the corrosion performance of ductile concrete systems accurately
- The multi-physics time-dependent numerical approach is effective in service life evaluation

RECOMMENDATIONS

Modifications and improvements for testing corrosion behavior in ductile concrete systems are recommended in terms of:

- Changing specimen size
- Cracking method
- Brine solution
- Cover depth and
- Measurements techniques

Modifications for salt scaling testing of ductile concrete system are recommended as follows:

- Surface finishing
- Surface evaluation
- Rating criteria

FUTURE WORK

- More investigation are needed to evaluate the effect of fibers on RCPT results in ductile concrete systems.
- Evaluation of effect of cracking on RCPT results in ductile concrete systems
- Development a test method for salt scaling evaluation in ductile concrete systems
- Investigation of the applicability of resistivity test for evaluation of corrosion performance in ductile concrete systems

