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Background

• Need for proactive winter road maintenance

• Large variation in weather conditions across the roadway network

• Limited coverage of roadside RWIS stations

• EDC-4: Weather Savvy Roads concepts and innovative technologies

• Integration of stationary and mobile RWIS data for improved
coverage, awareness, and management decision support
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RWIS Stations in NJ Example of an RWIS Station (NJ 24) Mobile RWIS Coverage



Weather Savvy Roads – Pilot Project
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• Objective: Deploy IoT and CV technology to assist
in road weather management:
• Collect road weather and condition data in

real time.
• Provide data visualization to operators, for

situational awareness and decision support.
• Assist in analysis and planning of road weather

management.
• Sponsored by the USDOT Accelerated Innovation Deployment

(AID) Program, as implementation of EDC 4 “Weather  Savvy
Roads Integrating  Mobile Observations  (IMO)” innovation.
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Weather Savvy Roads IMO: Concept
IMO = Integrated Mobile Observations
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Mobile RWIS Sensor



7

%

Mobile RWIS 
Sensor Installation

Vehicle Instrumentation – SSP/IMRT 
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Ambient Weather Sensor Installed Road Sensors Installed-Dump/Plow Trucks

Vehicle Instrumentation – Plow Trucks
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Cab Setup – IMRT Truck

Vehicle Instrumentation – Onboard PC
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%

2021 Outstanding Project 
Award

Weather Savvy Roads – Pilot Project



Road Surface Temperature (RST) Interpolation
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RST = commonly used measure (indicator) of the road surface condition

RWIS Readings Kriging Interpolation



RST Interpolation Methodology

Kriging Interpolation

Ordinary/Universal Kriging (OK)

Regression Kriging (RK)

Empirical Bayesian Kriging (EBK)

Machine Learning Regression

Lasso Regression

Support Vector Regression (SVR)

Random Forest Regression
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Inputs
• RWIS/MRIWS data

• Additional data
layers

Model
Kriging Interpolation 
and Machine 
Learning Modeling

Outputs
Estimated RST 
over NJ Roadway 
Network
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Regression Layers
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Land Cover TypeVegetation Type Elevation (DEM)Distance to Water



Case Study I
• RST Interpolation Stationary RWIS Data

• Data collected from the stationary RWIS nearby a given route
• Extrapolate the RST based on stationary RWIS readings
• Mobile RWIS data used as a “ground truth” for comparison
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Case Study I
Comparison of Kriging Models

• Regression Kriging yielded the best results
among the three models

• Better performance in Trial #2 with less
variability
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Date Model MAE RMSE

Trial #1

OK 9.22 10.26

RK 3.13 3.90

EBK 3.26 3.95

Trial #2

OK 15.72 17.09

RK 1.63 2.14

EBK 1.95 2.52



Case Study II
• Regional (statewide) RST estimation using stationary and mobile RWIS Data

• Winter storm event
• 11 active vehicles with mobile RWIS sensor
• 20 active (reporting) RWIS stations

• Several modeling approaches used in RST model development:
1. Ordinary/Universal Kriging Interpolation

a) Calibration/validation using stationary RWIS, testing with mobile RWIS
b) Calibration/validation using mobile RWIS, testing with stationary RWIS
c) Calibration/validation using combined stationary and mobile RWIS data

2. Regression Kriging Interpolation
• ML regression to estimate the RST “drift” based on a set of explanatory variables
• Kriging interpolation of the regression residuals
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Exploratory RST Data Analysis 
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Observed 
RST

Stationary 
RWIS

Mobile 
RWIS

Median 28.0 28.6
Mean 33.4 29.8
Min 14.0 12.3
Max 49.1 50.1

Elevation Stationary 
RWIS

Mobile 
RWIS

Mean 117.1 ft 358.6 ft
Min 0 ft -75.8 ft
Max 597.1 ft 1558.1 ft



Exploratory RST Data 
Analysis (cont.) 
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• RST variation
• Among the stations/ sensors
• By time of day
• Between mobile and stationary

RWIS – large discrepancies
observed

• Varying number of MRWIS
records



Case Study II, Ordinary/Universal Kriging Interpolation 
a) Calibration and validation = stationary RWIS   /   Testing = mobile RWIS.
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Model Validation (station data) Test (mobile data)
MAE RMSE MAE RMSE

Ordinary Kriging 1.96 2.74 2.98 4.01
Universal Kriging 2.02 2.94 2.92 3.91

b) Calibration and validation = mobile RWIS   /   Testing = stationary RWIS.

Model Validation (mobile data) Test (station data)
MAE RMSE MAE RMSE

Ordinary Kriging 0.44 0.85 4.22 5.43
Universal Kriging 0.44 0.83 4.61 6.17

Model Cross-validation (combined data)
MAE RMSE

Ordinary Kriging 0.95 1.75
Universal Kriging 0.95 1.77

c) Calibration and validation using combined stationary and mobile RWIS data.



Case Study II, Regression Kriging
• Regression based on several explanatory variables
• Kriging applied to regression residuals to account for the spatial variance:

• Large improvement for Lasso/SVR
• Marginal improvement for Random

Forest
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Model MAE RMSE
Lasso 2.18 3.02
SVR 2.12 3.35
Random Forest 1.10 2.02

Model MAE RMSE
Lasso + Ordinary kriging 0.96 1.78
SVR + Ordinary kriging 0.98 1.83
Random Forest + Ordinary kriging 1.00 1.89



Observed Issues
• Discrepancy between RWIS and MRWIS

• General difference between RWIS and MRWIS readings at nearby roadway segments
• Due to high mobility of MRWIS, the observations may vary a lot within a short time period and distance

due to local fluctuations or sensor bias
• Solutions: averaging readings, removing outliers, dealing with too few observations, fine-tuning

interpolation models, can improve the quality (accuracy) of the estimate
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Observations
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Increase in MRWIS records  
 the error (MAE) level is

lower

No clear correlation between 
the St. Dev of RST and the 
error (MAE) 
 kriging captures the spatial
variation in the dataset.

The remaining error (≈ 1°F) 
is due to variability that can 
not be explained by the 
applied models.



Potential Solutions
• Addressing the inconsistencies in local and regional RST variations

• Increase the number of MRWIS units and study the underlying
variations (could help address potential measurement bias or the
location bias)

• Explore additional interpolation models

• Explore integration of short-term past predictions (generally the RST
does not change significantly in short intervals)

• Hierarchical (bi-level) interpolation that uses stationary RWIS data for
at regional scale and the mobile RWIS to make adjustments at the
local scale
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Practical Application
Statewide estimation of road surface temperature (using the regression kriging model)
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Practical Application – Web-based Map Tool
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