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INTRODUCTION
Geological modeling is a vital step in tunneling projects that improves
the understanding of the geological settings and structure, leading to a
more efficient design, construction process, and management of
tunneling projects [1]–[4]. Three-dimensional visualization tools have
become a favorable means because of the intuitive experience it
creates for owners, engineers, construction managers, and contractors
[5]. In most tunneling projects, underground uncertainty is a major
factor in cost and time over run of the project.

To address this issue, Random Forest (RF) and Neural Network (NN)
techniques are used to predict lithology of ground associated with a
section of the Hudson Tunnel Project [3]. Data sources for developing
the model include 65 excavated boreholes along the proposed tunnel
path. Lithology of the ground along these boreholes and three-
dimensional associated coordinates are input features used for
developing these models. Also, a software called Decision Aids for
Tunneling (DAT) is utilized to investigate effect of uncertainties and risk
events on time and cost of the Hudson tunnel project.
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detail as desired, ranging from simple to advance rates and costs per unit
length for each construction method. The Resource Module is the third
component of the DAT and allows one to consider the scheduling and
assessment of resources required in tunnel construction. The fourth DAT
module allows one to update the cost, time and resource estimates [8].

Preliminary insights:
• By changing the data extraction intervals, the Neural Network model

showed a slight increase in performance, however, its effect on the
Random Forest model was negligible.

• Performance of the neural network model in the middle vertical
section of each borehole was better than at the two vertical ends of
the boreholes. The Random Forest model showed a uniform
performance along the borehole height.

• A higher variability in additional cost and delay increase the variance
of the assessed cost and time. Using equal minimum value for time
and cost leads to having similar projected cost and time prediction
(left edge in graph Figure 3).

• Four different scenarios of construction risk (water inflow) were
utilized for time and cost analysis of the Hudson tunnel project.
Large inflow has a greater effect on time of construction while
nuisance seems to affect the overall cost of construction more.

FUTURE RESEARCH 

Fig. 2: Result of time and cost analysis for 4 different scenarios (of construction risk)
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The DAT consist of four
modules: the Geology
Module, Construction
Module, Resource Module
and Updating Module. In
the Geology Module, the
user defines geology and
its uncertainties. The
geological information and
related probabilities are
obtained through a
combination of objective
information and sub-
jective estimates by
engineers [6, 7] who
provide geological
profiles, which relate the
geological conditions
along the tunnel profile to
tunneling methods. The
construction process can
be described in as much Fig. 2: Decision cycle - basis for the DAT

algorithm [8]
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Based on this study, Al models can be integrated into the DAT system
to offer alternative geologic prediction methods. Since both of the
proposed AI models provide probability of occurrence of each
category of geology at any location, the certainty of occurrence of
each of these categories at any location can be calculated. Using
these certainty values, the optimal location of new boreholes can be
found as the locations with highest uncertainty in prediction.
Also, models that consider specific risk events affecting the tunneling
process, such as water inflow can be developed on the same
proposed framework. Using probabilistic prediction of these factors
can provide a stochastic prediction of time and cost of tunneling
projects.
Furthermore, using this predicted parameters, cost and time analysis
and tunneling construction management tools can be developed.

Fig. 1: Performance of Random Forest and Neural Network Model in geological prediction

Fig. 3: Sensitivity of DAT prediction to cost and time estimation variability

Fig. 1: Schematic view of a (a) Neural Network [6], (b) Random Forest [7]
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