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Background

Snow/lce Mitigation Technigues

Use of chemicals and salts

Source: https://commons.wikimedia.org/w/index.php?curid=4747960
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Problem Statement

Labor intensive and time-consuming techniques -
/ Operational delays, safety concerns

y
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/ Operational delays, safety concerns
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/ Deteriorating pavement structures > Durabllity issues /
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Problem Statement

Labor intensive and time-consuming techniques -
/ Operational delays, safety concerns /

/ Deteriorating pavement structures > Durabllity issues /

Increased salinity - Groundwater contamination

y y
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Research Goal
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Research Goal

ot o

Evaluate the efficiency of electrically-heated

pavements for deicing applications in cold regions
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Study

Objectives
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Study

ODbjectives

» Develop electrically-conductive asphalt
mixtures using different dosages of
conductive additives

» Construct full-scale pavement test strips
using selected electrically-conductive
mixtures

» Monitor heating performance and power
consumption for each test strip

» Long-term performance evaluation
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als and Design of Conductive
Asphalt Mix




Selected Asphalt Mixture for Modification

High Performance Thin Overlay (HPTO) JMF
NMAS 4.7/5 mm

Air Void 35+1%

Optimum Binder Content WL

Gmm 2.459

Dust to Binder Ratio 0.9 (Target: 0.6 — 1.3)

Binder PG 76-22
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Preparation of Conductive Asphalt Mixture (ECA)

Asphalt

G

Carbon fiber
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Preparation of Conductive Asphalt Mixture (ECA)

Asphalt

G

Carbon fiber
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Preparation of Conductive Asphalt Mixture (ECA)

Until achieved
3.5% Air Voids
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Preparation of Conductive Asphalt Mixture (ECA)

Until achieved
3.5% Air Voids
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Resistivity Testing and Results

Place graphite Test contact
on a steel plate resistance

Place graphite on Test resistivity of
top of sample asphalt sample
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Resistivity Testing and Results
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Impact of Carbon Fiber on Resistivity
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Impact of Carbon Fiber on Resistivity
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Electrode

Installation and
Spacing

(To controller
system)

Traffic Direction

Spacing (in.)

Heatpave =~ Rowan

12 in. 12 in. & 6 in.

L, Transverse Electrodes

— " Longitudinal Electrodes

» Insulating Coating

> Electrode-spacing
» Longitudinal electrodes: 2.5 in. wide and 0.5 in.

thick steel
> Transverse electrodes are 1 in. wide and 0.125

In. thick steel
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Evaluate System Efficiency and Pavement
Heating Performance



Methodology

for Power
Supply

Method 1:

Method 2:
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Method 1:

» System run manually
» Both the section was set ON at same
Methodology time

for Power
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Surface Temperature Profile During Heating
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Surface Temperature Distribution
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Surface Temperature Distribution

» Higher standard

deviation indicates non-
uniformity N

U‘

0000

» Rowan strip outperforms

(better heat distribution) | (— .
Heatpave .

» Electrode spacing: No
effect

. Surface thermocouple
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Surface Temperature Distribution

> Higher standard ;T
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Surface Temperature Distribution

» Higher standard
deviation indicates non-
uniformity

» Rowan strip outperforms
(better heat distribution)
Heatpave

» Electrode spacing: No
effect
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Surface Temperature Distribution

» Higher standard
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Surface Temperature Distribution

» Higher standard
deviation indicates non-
uniformity
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Electrode spacing 6in. Vs 12in. (Rowan Section)
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Electrode spacing 6in. Vs 12in. (Rowan Section)

» 6in. electrode spacing
shows higher average
surface temperature(~ +3°F)
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Method 1:

» System run manually
» Both the section was set ON at same
Methodology time

for Power
Supply Method 2:
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Method 1:

» System run manually
» Both the section was set ON at same
time

Methodology
for Power
Supply Method 2:

» Controlled by embedded sensor
(controller)
» Heating is ON at 46° F and OFF at 52° F
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Methodology
for Power

Supply
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Temperature at System Trigger
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Temperature at System Trigger
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Temperature at System Trigger
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Temperature at System Trigger

» Heatpave Section

Ambient temperature range
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Temperature at System Trigger
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Heating — Time Ratio (HTR)
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Heating — Time Ratio (HTR)

» Heating performance to
maintain surface
temperature above
freezing point (32°F)

> HTR (%)= —
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Heating — Time Ratio (HTR)

» Heating performance to 45 -
maintain surface

HTR valuel00% - Poor Performance

HTR Value 0% - Best Performance
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Power Consumption - Comparison

» Average of power consumed by each run cycles during time period of
September 2021 — March 2022

Average Power

Section Std. Deviation
(Watts/ft?)
Heat Pave 19.75 0.45
Rowan 6 in. 11.90 0.25
Rowan 12 in. 5.95 0.25
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September 2021 — March 2022
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Deicing Event During Snowfall on Jan 03,
2022



01:00 PM Heatpave and Control 01:00 PM Rowan Section

Deicing

Performance

Heating Duration: 7 hours
|

Average accumulated snow depth: 3.2 in.
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03:30 PM Heatpave and Control 03:30 PM Rowan Section

Deicing
Performance




Summary of Findings

Performance

Factors

Surface Heating

Order of Sections

2

Rowan 6in. Heatpave Rowan 12 in
Performance
Surfac_e T_emperature Rowan 6 in. Rowan 12 in. Heatpave
Distribution
Power Consumption | Heatpave (highest) Rowan 6 in. Rowan 12 in.
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Summary of Findings

» Heatpave generated more heat; however, that was not reflected on

surface temperature — Conductive layer at higher depth

» Power consumption was the highest for Heatpave (~20 W/ft?), followed by

Rowan 6 in. spacing strip (~12 W/ft?) and 12 in. spacing strip (~6 W/ft?)

» Rowan section showed effective deicing performance (runtime ~ 10

hours)
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» Design of ECA mix

Use of combination of additives in fibrous and powder form for
better conductivity

» Ease of construction

Conductive asphalt mixture better than the conductive tack
coat material

» Construction challenge
Formation of fiber clumps (or hot spots)

» Impact of electrode spacing

Shorter spacing - Better heating
Less impact on surface temperature uniformity
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» Heating Efficiency
ECA mixture performed better with a less power consumption

» Electrical Supply
Higher voltage (>20V) will be required for heating at lower
ambient temperature conditions (<10°F)

» Control of Power Supply
Based on embedded thermocouple is not recommended for
strip comparison

» Other factors to consider

¢ Thermal conductivity of ECA layer
¢ Thickness ratio of asphalt capping layer and ECA layer

122



0 Dynatest/ ACSIR

HVS - Mk IV

Long-Term

Performance

Heavy Vehicle Simulator (HVS) loading in progress

123




Acknowledgements:
Dr. Yusuf Mehta (CREATES)
Dr. Ayman Ali (CREATES)
Thank You! Dr. Ahmed Saidi (CREATES)
Rahaf Hasan (CREATES)
Dr. Mohammed Elshaer (ERDC)
Christopher Decarlo (ERDC)


http://www.rowan.edu/creates

Questions and
Answers

Ashith Marath, M.S

PhD Student at CREATES

Rowan University, Glassboro, New Jersey,
08028, United States

Email: marath42@students.rowan.edu

RowanUniversity

CENTER FOR RESEARCH & EDUCATION IN
ADVANCED TRANSPORTATION ENGINEERING SYSTEMS



http://www.rowan.edu/creates

