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Background

Snow/Ice Mitigation Techniques

Source: Willowpix/iStock

Use of chemicals and salts

Source: https://commons.wikimedia.org/w/index.php?curid=4747960

Snow plowing 
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Labor intensive and time-consuming techniques 

Operational delays, safety concerns

Deteriorating pavement structures  Durability issues

Increased salinity  Groundwater contamination

Problem Statement
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Research Goal
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Evaluate the efficiency of electrically-heated 

pavements for deicing applications in cold regions

Research Goal
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Objectives



 Develop electrically-conductive asphalt 

mixtures using different dosages of 

conductive additives 

 Construct full-scale pavement test strips 

using selected electrically-conductive 

mixtures 

 Monitor heating performance and power 

consumption for each test strip

 Long-term performance evaluation
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Selected Asphalt Mixture for Modification

High Performance Thin Overlay (HPTO) JMF

NMAS 4.75 mm

Air Void 3.5 ± 1%

Optimum Binder Content 7.7 %

Gmm 2.459

Dust to Binder Ratio 0.9 ( Target : 0.6 – 1.3) 

Binder PG 76-22 
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Preparation of Conductive Asphalt Mixture (ECA)

Graphite Carbon fiber

Asphalt

FA

CA
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Resistivity Testing and Results

Place graphite 
on a steel plate

Test contact 
resistance

Place graphite on 
top of sample

Test resistivity of 
asphalt sample
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Graphite A Opt. Dose.: 40% Graphite B Opt. Dose.: 28%

Graphite C Opt. Dose.: 30% ± 1 Standard Deviation

Note: ECA mixes with only carbon fiber had " overflow" electrical resistivity

Mix with minimum electrical resistivity: HPTO mixture at 8.1 % binder 

content, 30% graphite (large flakes) + 1% CF

Impact of Carbon Fiber on Resistivity
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Pavement 

Strips’ 

Structures



Proprietary Heated Pavement

(Heatpave)

Control Section
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Traffic Direction

Transverse Electrodes

Longitudinal Electrodes

Insulating Coating

(To controller 

system)

Electrode-spacing

Spacing (in.)

Heatpave Rowan

12 in. 12 in. & 6 in.

 Longitudinal electrodes: 2.5 in. wide and 0.5 in. 

thick steel

 Transverse electrodes are 1 in. wide and 0.125 

in. thick steel

Electrode 

Installation and 

Spacing
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Step down transformers 

(208-240V to 24V)

Instrumentation





Method 1: 

 System run manually

 Both the section was set ON at same 

time

Method 2:

 Controlled by embedded sensor 

(controller)

 Heating is ON at 46º F and OFF at 52º F
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Surface Temperature Profile During Heating
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 Higher standard 

deviation indicates non-

uniformity 

 Rowan strip outperforms 

(better heat distribution) 

Heatpave

 Electrode spacing: No 

effect

Surface Temperature Distribution
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Electrode spacing 6in. Vs 12in. (Rowan Section)
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6in. electrode spacing 

shows higher average 

surface temperature(~ +3ºF)

Electrode spacing 6in. Vs 12in. (Rowan Section)
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Method 1: 

 System run manually

 Both the section was set ON at same 

time
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Temperature at System Trigger
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Temperature at System Trigger

 Heatpave Section 

Ambient temperature range 

(30ºF - 14ºF) 

 Rowan Section

Ambient Temperature Range 

(37ºF - 18ºF) 
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Temperature at System Trigger
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Heatpave started at lower ambient temperatures than Rowan



Heating – Time Ratio (HTR)

t2

t1
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 Heating performance to 

maintain surface 

temperature above 

freezing point (32ºF)

 HTR (%)= 
𝑡1

𝑡2

Heating – Time Ratio (HTR)

t2

t1
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Freezing point

HTR value100%  Poor Performance

HTR Value 0%  Best Performance
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Power Consumption - Comparison

Section
Average Power 

(Watts/ft2)
Std. Deviation

Heat Pave 19.75 0.45

Rowan 6 in. 11.90 0.25

Rowan 12 in. 5.95 0.25

111

Average of power consumed by each run cycles during time period of 

September 2021 – March 2022
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01:00 PM Heatpave and Control 01:00 PM Rowan Section

Average accumulated snow depth: 3.2 in.

Heating Duration: 7 hours
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Deicing 

Performance

03:30 PM Rowan Section03:30 PM Heatpave and Control

Heating Duration: 9.5 hours



Performance 

Factors

Order of Sections

1 2 3

Surface Heating 

Performance
Rowan 6in. Heatpave Rowan 12 in

Surface Temperature 

Distribution
Rowan 6 in. Rowan 12 in. Heatpave

Power Consumption Heatpave (highest) Rowan 6 in. Rowan 12 in.
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 Heatpave generated more heat; however, that was not reflected on 

surface temperature – Conductive layer at higher depth

Power consumption was the highest for Heatpave (~20 W/ft2), followed by 

Rowan 6 in. spacing strip (~12 W/ft2) and 12 in. spacing strip (~6 W/ft2)

Rowan section showed effective deicing performance  (run time ~ 10 

hours)
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Conclusions

Design of ECA mix

Use of combination of additives in fibrous and powder form for 

better conductivity

Ease of construction

Conductive asphalt mixture better than the conductive tack 

coat material 

Construction challenge

Formation of fiber clumps (or hot spots)

 Impact of electrode spacing

Shorter spacing  Better heating

Less impact on surface temperature uniformity 
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Conclusions

Heating Efficiency

ECA mixture performed better with a less power consumption

Electrical Supply

Higher voltage (>20V) will be required for heating at lower 

ambient temperature conditions (<10ºF)

 Control of Power Supply

Based on embedded thermocouple is not recommended for 

strip comparison

Other factors to consider

 Thermal conductivity of ECA layer

 Thickness ratio of asphalt capping layer and ECA layer
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Heavy Vehicle Simulator (HVS) loading in progress

Long-Term 

Performance
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