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Smart Infrastructure Lab
»Smart Infrastructure Lab has versatile facility for performing large-scale
structural testing, computing, and monitoring.
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Background

 Modular structures has many benefits
»Accelerate construction process
»Reduce Labor expenses

»Increase quality and safety

References: https://cnim-groupe.com/en/businesses/defense-security-and-digital-intelligence/modular-assault-bridge.

https://www.bimcommunity.com/files/images/userlib/ChapmanTaylor.jpg
N. Bertram, S. Fuchs, J. Mischke, R. Palter, G. Strube, J. Woetzel, Modular construction: from projects to products

McKinsey & Company: Capital Projects & Infrastructure (2019), pp. 1-34
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 Lego-inspired structures are the reconfigurable modular structures
that can be assembled, disassembled, and reassembled for different
structures.

B4
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Reference: Y. Bao, V.C. Li, Feasibility study of Lego-inspired construction with bendable concrete, Automation in Construction,
113 (2020), 103161, doi: 10.1016/j.autcon.2020.103161
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Advantages of using Lego-inspired structures

» Improve sustainability and resilience
» Improve construction efficiency and productivity
» Reduce the adverse impact of construction on the environment

Current challenges on design of Lego structures

» There is lack of a knowledge about the computer-aided design and
modeling of modular blocks.

» It Is unclear how the modular blocks should be designed to improve
the mechanical performance of modular structures while minimizing
the mass.
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Research goal and objectives

O This study aims to develop a many-objective optimization method to
optimize the design of Lego-inspired modular blocks for achieving high
mechanical performance of reconfigurable structures.

 Objectives:

» To develop high-fidelity surrogate models to predict the load-carrying
capacity, stiffness, and ultimate deflection

» To develop a new many-objective optimization method to obtain
optimal design

Machine learning prediction Many-objective optimization
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Methodology

Experiment and simulation Machine learning Optimization

Design variables
and
objective function

Experimental Machine-learning
testing model

Simulation on Model evaluation Many-objective
ABAQUS optimization

< i L

Prediction of
mechanical Optimal design
properties

Dataset
development
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Experimental test

O Initial design

A set of four types of Lego-blocks was selected as the initial design for
the experiment and optimization process.
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 Specimens, test set-up

» Engineered cementitious composite (ECC) is used.
» Three-point bending test was conducted.

Specimen 2
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Finite element model

J Simulation details

» Assemblages were modeled using eight-node solid elements
(C3D8R).

» Contact between blocks were modeled by surface-to-surface hard
contact.

» The behavior of concrete was modeled using concrete damage
plasticity (CDP), as shown in Table 1 below.

Parameters of the CDP model

Density |Poisson's| Young's | Dilation | Eccentricity | fb,/fc, K Viscosity
(kg/mm3) | ratio modulus angle parameter
(GPa)
2200 0.2 30 36 0.1 1.16 | 0.67 0
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Finite element analysis

Specimen 1
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Dataset development

Dataset generation

i

Design variables

Finite element

* Load capacity

« Ultimate Deflection

e Stiffness

Mechanical properties
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Machine learning (sequential surrogate modeling)

Real function New sample\

Data points

= R = ==

/
\ / /\/ /
VA / ’/
Surrogate model M ¢ Model error M/ Updated surrogate model
[nitial model Add infill sample Updated model

Reference: S.-S. Jin, H.-J. Jung, Sequential surrogate modeling for efficient finite element model updating, Comput. Struct., 168
(2016), pp. 30-45, 10.1016/j.compstruc.2016.02.005
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Machine learning models

 Three machine learning models were developed for the load-carrying
capacity, ultimate deflection, and stiffness
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Prediction accuracy

O The typical performance metrices indicate that the models have high
accuracy and generalization performance

_ Mechanical properties
Set Metric _ ) _
Load capacity Deflection Stiffness
Training R? 0.99 0.98 0.98
RMSE 0.04 0.10 0.18
Validation R? 0.96 0.94 0.97
RMSE 0.91 P-16 ) 0.93

s = (] .
=1\l il 4

Coefficient of determination  R*(P) =1 -5 -
i la; — mean(a;)]

N (. )2
Root mean square error RMSE (P) =le=1(pl a;)
n
Predictions P ={p1,p1, ., Pn}
Actual values A= {as,aq, .., a,}
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Model evaluation
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Many-objective optimization

A many-objective optimization problem is formulated to optimize the
design of Lego-inspired block

 Six design variables were considered: H, W1, W2, W3, T1, T2, T3

O Four objective functions were considered

1
» Load-capacity (maximize) i
» Deflection (maximize) H
> Stiffness (maximize) ‘

» Volume (minimize)

. : : W :
(] one design constrains are applied: ’

» The maximum mass of blocks is limited to 61 kg

Reference: Josyula, S. P., Krasemann, J. T., & Lundberg, L. (2020). Parallel computing for multi-objective train rescheduling. IEEE
Transactions on Emerging Topics in Computing.
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Optimization process

[ A genetic algorithm is used to solve the optimization problem.

The iterative process for optimization
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Optimization results

A set of solutions are obtained from the optimization

A decision-making algorithm TOPSIS is used to select the optimal design

 The optimal design of the Lego blocks has highest mechanical properties
and minimum volume.

I P ey ey
231 220 5%
216 325 -33.5%
275 300 -8.3%
30 50 -40.0%
18 30 -40.0%
18 30 -40.0%
24.8 20.2 22.8%
25.9 11.3 129.2%
2.9 2.6 11.5%
4.7 9.7 -51.6%
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Conclusions

 The developed machine learning models can predict the mechanical
performance of modular blocks with high accuracy and generalization
performance.

O The framework provides an effective solution for design optimization of
Lego-inspired modular blocks.

 The optimal design increased the load-carrying capacity, deformaubility,
and stiffness by 22.8%, 11.5%, and 129.2%, respectively, and reduced
the volume by 51.6%.
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Thank youl!

Questions & Answers

Email: yi.bao@stevens.edu
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