

Design of Lego-inspired Reconfigurable Modular Blocks for Automated Construction of Engineering Structures

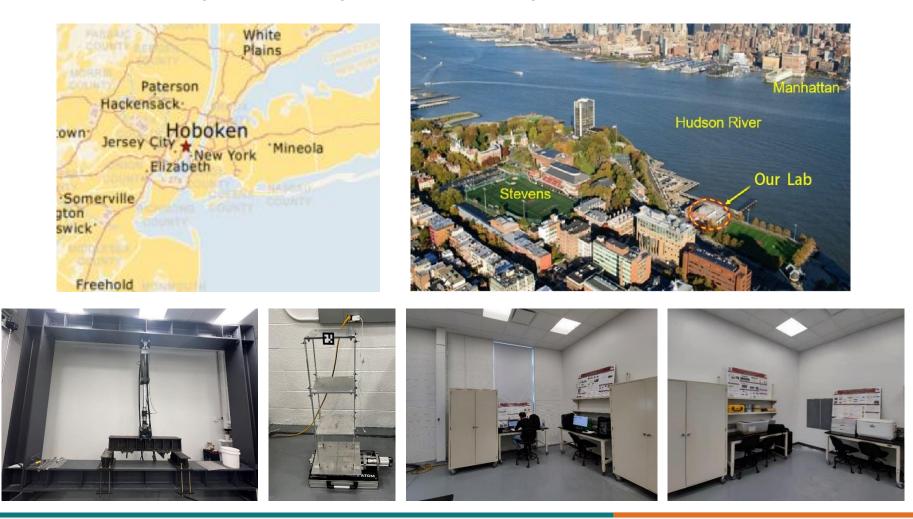
Rojyar Barhemat¹, Victor C. Li², Yi Bao^{1,*}

 ¹ Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
² Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105

* Email: <u>yi.bao@stevens.edu</u>

Smart Infrastructure Lab

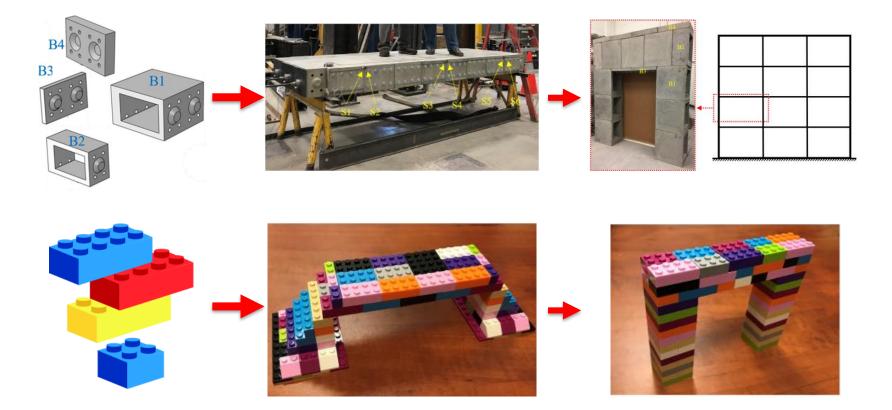
Smart Infrastructure Lab has versatile facility for performing large-scale structural testing, computing, and monitoring.



Background

- Modular structures has many benefits
 - Accelerate construction process
 - Reduce Labor expenses
 - Increase quality and safety

References: <u>https://cnim-groupe.com/en/businesses/defense-security-and-digital-intelligence/modular-assault-bridge</u>. <u>https://www.bimcommunity.com/files/images/userlib/ChapmanTaylor.jpg</u> N. Bertram, S. Fuchs, J. Mischke, R. Palter, G. Strube, J. Woetzel, Modular construction: from projects to products McKinsey & Company: Capital Projects & Infrastructure (2019), pp. 1-34 Lego-inspired structures are the reconfigurable modular structures that can be assembled, disassembled, and reassembled for different structures.



Reference: Y. Bao, V.C. Li, Feasibility study of Lego-inspired construction with bendable concrete, Automation in Construction, 113 (2020), 103161, doi: 10.1016/j.autcon.2020.103161

Advantages of using Lego-inspired structures

- Improve sustainability and resilience
- Improve construction efficiency and productivity
- Reduce the adverse impact of construction on the environment

Current challenges on design of Lego structures

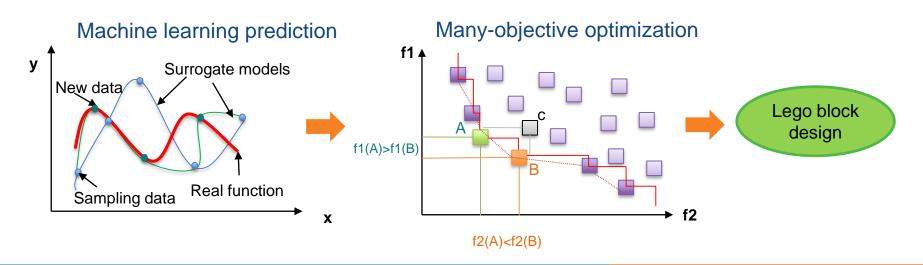
- There is lack of a knowledge about the computer-aided design and modeling of modular blocks.
- It is unclear how the modular blocks should be designed to improve the mechanical performance of modular structures while minimizing the mass.

Research goal and objectives

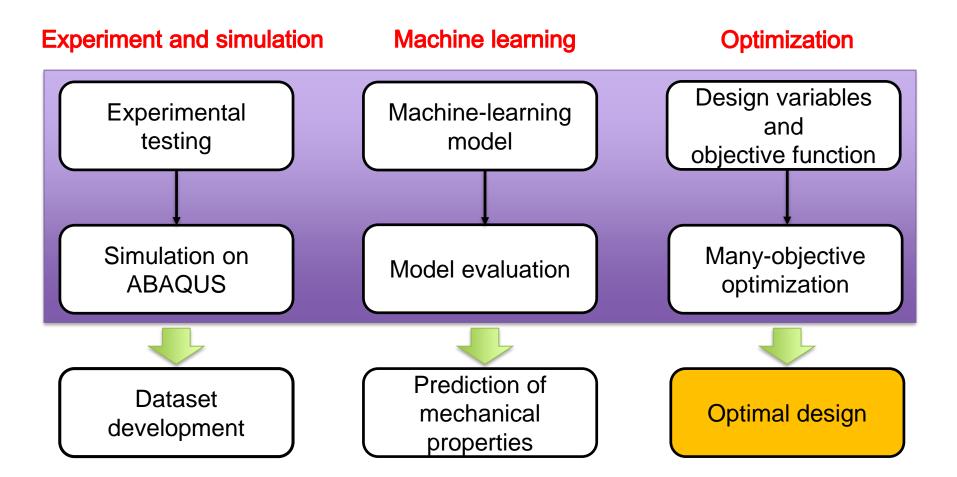
This study aims to develop a many-objective optimization method to optimize the design of Lego-inspired modular blocks for achieving high mechanical performance of reconfigurable structures.

Objectives:

- To develop high-fidelity surrogate models to predict the load-carrying capacity, stiffness, and ultimate deflection
- To develop a new many-objective optimization method to obtain optimal design



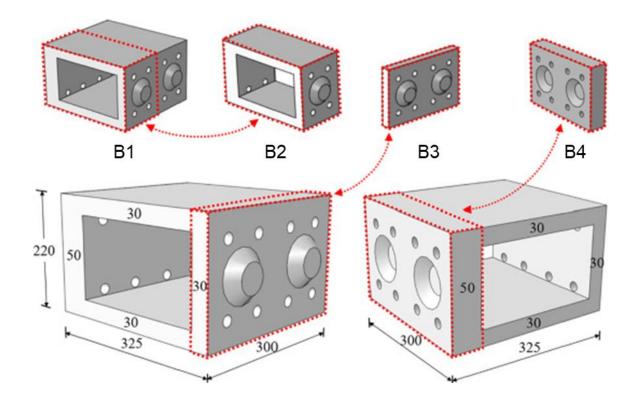
Methodology



Experimental test

Initial design

A set of four types of Lego-blocks was selected as the initial design for the experiment and optimization process.

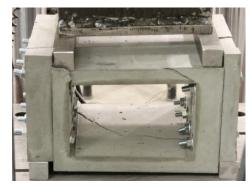


Specimens, test set-up

- Engineered cementitious composite (ECC) is used.
- > Three-point bending test was conducted.

Specimen 1

Specimen 2



Finite element model

Simulation details

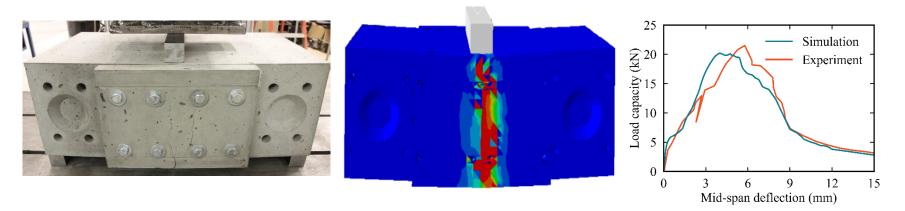
- Assemblages were modeled using eight-node solid elements (C3D8R).
- Contact between blocks were modeled by surface-to-surface hard contact.
- The behavior of concrete was modeled using concrete damage plasticity (CDP), as shown in Table 1 below.

Density (kg/mm³)	Poisson's ratio	Young's modulus (GPa)	Dilation angle	Eccentricity	fb ₀ /fc ₀	К	Viscosity parameter
2200	0.2	30	36	0.1	1.16	0.67	0

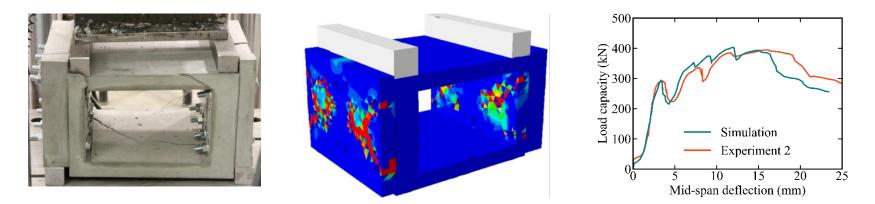
Parameters of the CDP model

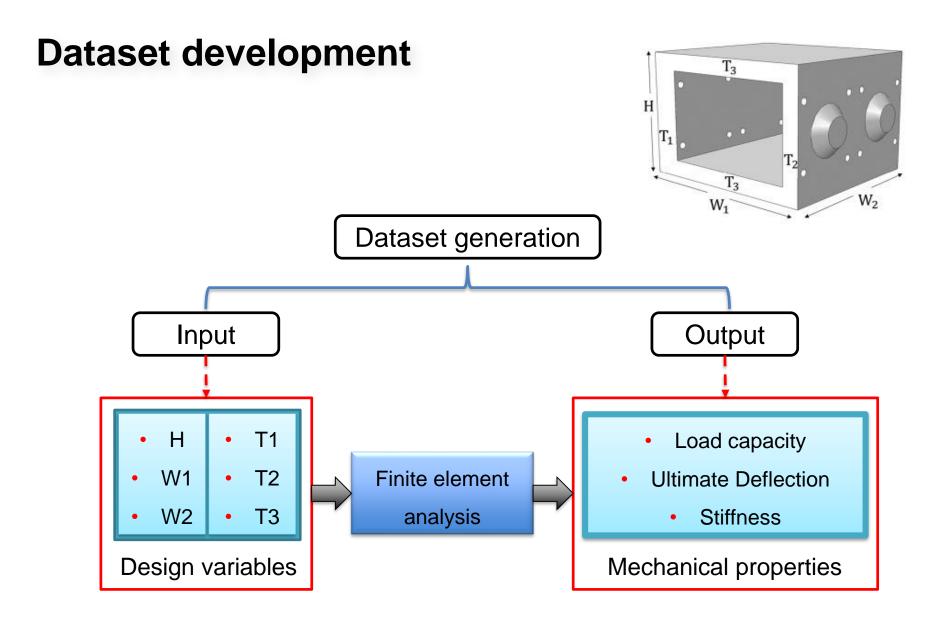
Finite element analysis

Specimen 1

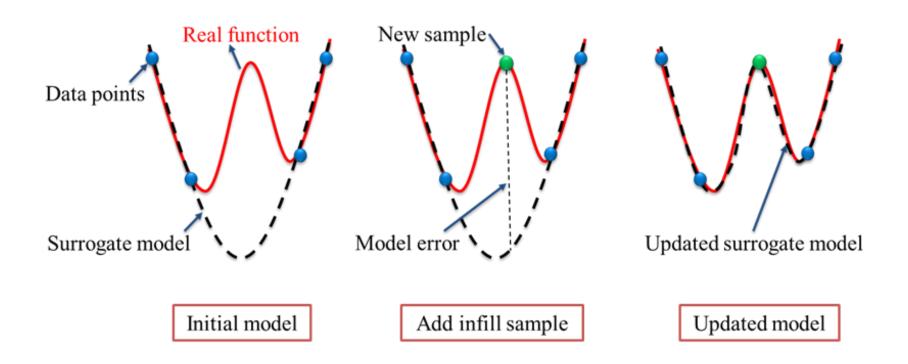


Specimen 2





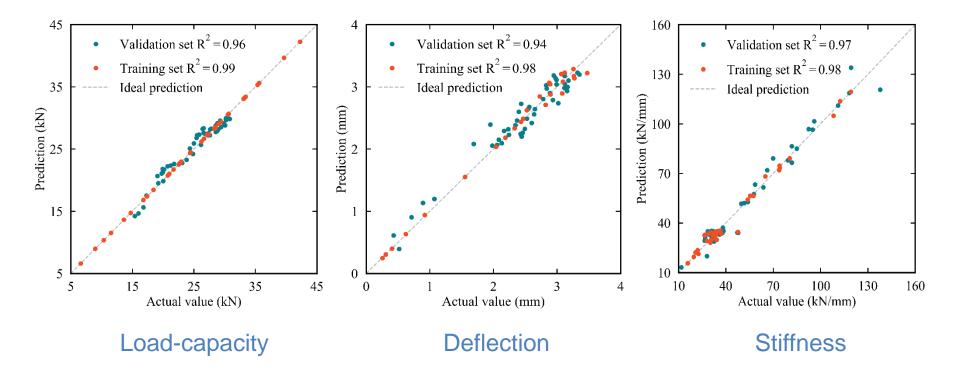
Machine learning (sequential surrogate modeling)



Reference: S.-S. Jin, H.-J. Jung, Sequential surrogate modeling for efficient finite element model updating, Comput. Struct., 168 (2016), pp. 30-45, 10.1016/j.compstruc.2016.02.005

Machine learning models

Three machine learning models were developed for the load-carrying capacity, ultimate deflection, and stiffness



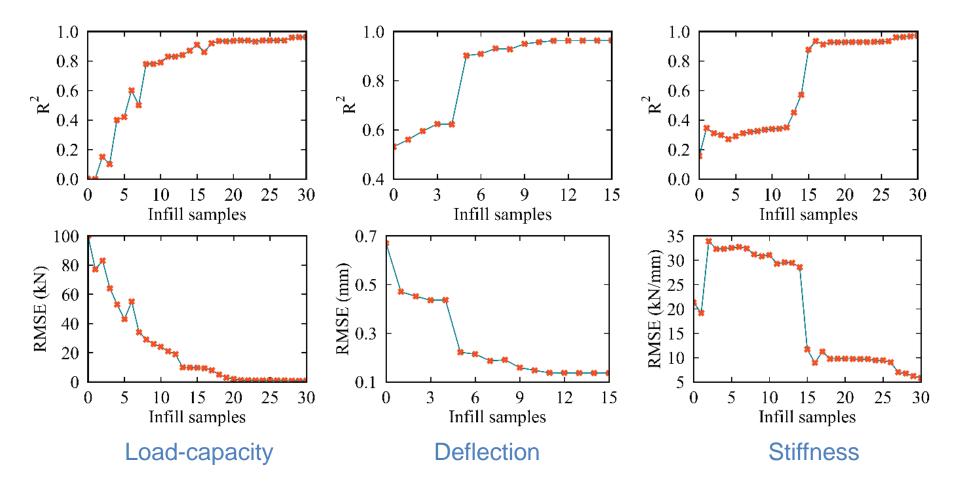
Prediction accuracy

The typical performance metrices indicate that the models have high accuracy and generalization performance

Cot	Motrio	Mechanical properties					
Set	Metric	Load capacity	Deflection	Stiffness			
Training	R ²	0.99	0.98	0.98			
	RMSE	0.04	0.10	0.18			
Validation	R ²	0.96	0.94	0.97			
	RMSE	0.91	$\frac{0.16}{\sum_{i=1}^{n} (p_i - a_i)^2}$	0.93			
Coefficient of determination $R^2(P) = 1 - \frac{\sum_{i=1}^{n} (p_i - a_i)^2}{\sum_{i=1}^{n} [a_i - mean(a_i)]^2}$							

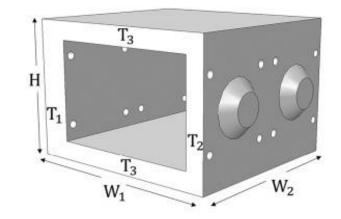
Root mean square error $RMSE(P) = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)^2}{n}}$ Predictions $P = \{p_1, p_1, ..., p_n\}$ Actual values $A = \{a_1, a_1, ..., a_n\}$

Model evaluation



Many-objective optimization

- A many-objective optimization problem is formulated to optimize the design of Lego-inspired block
- Six design variables were considered: H, W1, W2, W3, T1, T2, T3
- Four objective functions were considered
- Load-capacity (maximize)
- Deflection (maximize)
- Stiffness (maximize)
- Volume (minimize)

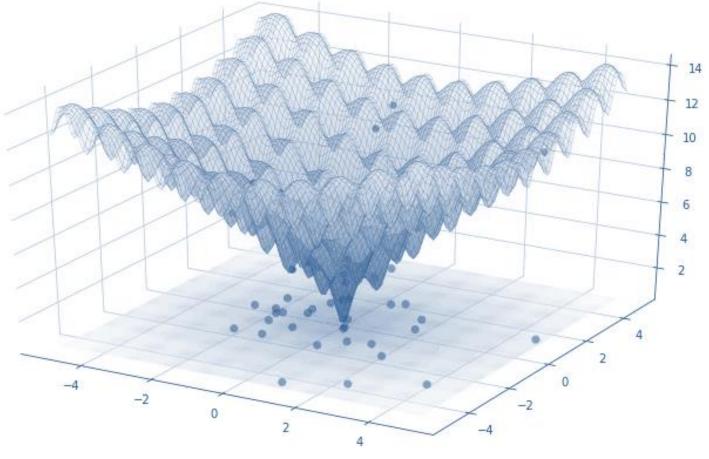


- one design constrains are applied:
- The maximum mass of blocks is limited to 61 kg

Reference: Josyula, S. P., Krasemann, J. T., & Lundberg, L. (2020). Parallel computing for multi-objective train rescheduling. IEEE Transactions on Emerging Topics in Computing.

Optimization process

□ A genetic algorithm is used to solve the optimization problem.



The iterative process for optimization

Optimization results

- □ A set of solutions are obtained from the optimization
- A decision-making algorithm TOPSIS is used to select the optimal design
- The optimal design of the Lego blocks has highest mechanical properties and minimum volume.

	Optimal design	Initial design	Discrepancy
H (mm)	231	220	5%
W ₁ (mm)	216	325	-33.5%
W ₂ (mm)	275	300	-8.3%
T ₁ (mm)	30	50	-40.0%
T ₂ (mm)	18	30	-40.0%
T ₃ (mm)	18	30	-40.0%
Load capacity (kN)	24.8	20.2	22.8%
Stiffness (kN/mm)	25.9	11.3	129.2%
Deflection (mm)	2.9	2.6	11.5%
Volume (L)	4.7	9.7	-51.6%

Conclusions

- The developed machine learning models can predict the mechanical performance of modular blocks with high accuracy and generalization performance.
- The framework provides an effective solution for design optimization of Lego-inspired modular blocks.
- The optimal design increased the load-carrying capacity, deformability, and stiffness by 22.8%, 11.5%, and 129.2%, respectively, and reduced the volume by 51.6%.

Thank you!

Questions & Answers

Email: yi.bao@stevens.edu