INFLUENCE OF CRACKING AND BRINE CONCENTRATION ON CORROSION AND CHLORIDE CONTENT

Aaron J. Strand, Matthew P. Adams, Matthew J. Bandelt

J.A. Reif, Jr., Department of Civil and Environmental Engineering New Jersey Institute of Technology

NJDOT Research Showcase: Lunchtime Edition 21st April 2022

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Chloride Profiling Results

CORROSION OF CONCRETE STRUCTURES

- 2002 Study: Corrosion cost and preventative strategies for highway bridges was \$8.3 Billion
- In reinforced concrete bridges primary cause is chloride-induced corrosion

Simplified deterioration mechanism (Aboutaha, 2004)

CAUSES OF CORROSION OF STEEL IN CONCRETE

Source: Design Guide for Bridges for Service Life 2014

ROAD SALTING

- 2014 road consumption
 24.5 million metric tons
- Forms of salt used

 Rock Salt
 Brine (23.3% for -6°F freezing)
- NJDOT Winter 2018-2019 Material Usage
 - o Salt 391,447 tons
 - Liquid calcium chloride 803,709 gallons
 - \circ Brine 687,370 gallons

Salt Consumption in the United States, 1940-2014

Sources: Winter Readiness, NJDOT; Minerals Yearbook 2014 Salt, U.S. Geological Survey; Special Report 235: Highway Deicing, National Research Council

MACROCELL CORROSION

- Local anode and large cathode
- Macrocell forms between upper layer reinforcement and lower mat
- Frequently occurs in chloride induced corrosion
- In bridge decks this form is accelerated due to large cathode/anode area ratio

Chloride Ingress

Diffusion

- Chlorides need to penetrate concrete to reach reinforcement
- $_{\odot}$ Concentration gradient

Direct access

 Chlorides have concentrated path to reinforcement

Sources of Bridge Deck Cracking

- Plastic Shrinkage
- Drying Shrinkage
- Surface Tears (Finishing)
- Flexure/Deflection of the Deck
- Reflection of Underlying Cracks and Joints
- Temperature Related Mechanisms

GOVERNING QUESTION

- Does current testing take into account possible real world considerations?
- Amount of salt placed on roads
- Salt placement cycles
- Integrity/condition of bridge deck

VARIABLES OF INTEREST

Impact of salt brine concentration

 How does the concentration of the chloride brine impact the time to corrosion?

- Impact of cracking
 - How does the presence of cracks to the reinforcing steel impact the time to corrosion?

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Chloride Profiling Results

SPECIMENS FOR LABORATORY TESTING

- ASTM G109 for macro-cell current

 Assumed no initial chlorides in concrete
 Corrosion only from chloride ingress
- Design compressive strength of 4500 psi
- Tested compressive strength:

 Set 1 Specimens 5620 psi
 Set 2 Specimens 6660 psi

ASTM G109

- Been previously used to study corrosion in steel of:
 - Ordinary portland cement ^[1,2]
 - High performance concrete^[1]
 - Surface applied corrosion inhibitors^[3]
 - Corrosion resistance of microalloyed steels^[4]

13 NJI

LAB SPECIMEN TESTING

LAB SPECIMEN CASTING & FINAL

LOADING SPECIMENS TO FORM CRACK

- Single Point load
 Load at mid-span
- Loaded until 14.5 kips (M_{cr} 2.75 k-ft)
 - Stopped if cracking was observed
 - $_{\odot}$ Loaded at 5000 lb./min
- Crack widths
 - \circ 0.004 0.012 in.
 - \circ 0.15 0.30 mm

LAB SPECIMEN TESTING MODIFICATIONS

- Five salt brines used
 0 1.5, 3.0, 4.5. 6.0, and 9.0% NaCl
- Cracking conditions
 - \circ One un-cracked
 - \circ One flexure cracked
- Current measurements collected more frequently

MACROCELL CORROSION MEASUREMENT

- Measure voltage across resistor
- Threshold values

 $\,\circ\,$ Integrated macrocell current of <u>75 C</u>

 \circ Macrocell current greater than <u>10 µA</u>

$$I_{j} = V_{j}/100$$
$$TC_{j} = TC_{j-1} + \left[\left(t_{j} - t_{j-1} \right) * \left(i_{j} + i_{j-1} \right) / 2 \right]$$

Where TC is Total Corrosion (coulombs), t_j is time (seconds) to test, I_i is macrocell current,

 V_i is measured voltage across 100 Ω resistor in volts

LARGE SCALE BRIDGE DECK SPECIMEN

- Full size bridge deck (25 ft. wide x 50 ft. long)
- Exposed to 6.0% brine, freezing-thawing, and moving load
- No macrocell corrosion testing on deck
- Chloride content tested through coring of deck

Image Source: Dreamstime

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Chloride Profiling Results

MACROCELL CURRENT RESULTS

Selected Representative Data

Set 2 Ponding Cycle 1					S				
Time of Exposure (Davs)	4.5 Uncracked	4.50% 6.00% ncracked Cracked Cracked			Time of Exposure	4.50%		6.00%	
Day 0	0.4	0.5	0.5	Brine Solution	(Days)	Uncracked	Cracked	Cracked	
Day 3	0.6	154.9	129.7	Added	Day 31	0.5	91.2	142.0	
Day 6	0.6	116.1	87.5		Day 34	0.0	70.0	150.1	
Day 9	0.5	103.5	76.5		Day 37	0.0	56.9	179.5	
Day 12	0.0	83.8	67.9		Day 40	0.0	47.5	173.8	
Day 14	0.3	77.5	68.3	Brine Solution	Day 42	0.0	43.8	177.3	
Day 17	0.6	42.5	60.3	Removed	Day 45	0.0	22.7	96.4	
Day 20	0.0	40.4	47.7		Day 48	0.0	15.4	93.8	
Day 23	0.5	64.3	34.4		Day 51	0.5	23.3	89.8	
Day 26	0.4	59.5	34.5		Day 54	0.5	21.6	84.0	
Day 28	0.0	57.8	31.9		Day 56	0.0	17.4	76.9	

*Note: Bolded values represent current values above 10 µA (specified in ASTM G109), indication of chlorides reaching reinforcement steel

MACROCELL CURRENT OVER TIME

22 NJI

MACROCELL CURRENT SEMI LOG

TOTAL CORROSION

NI

CRACKING AND BRINE CONCENTRATION FINDINGS

- For cracked specimens:
 - $_{\odot}$ Threshold met for solutions greater than 3%.
 - Reached at a greatly accelerated rate
- For un-cracked specimens:
 - At all chloride levels no corrosion appears to have initialized
- Presence of brine larger factor than brine concentration
- No difference in current results for uncracked during testing time

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Chloride Profiling Results

PROFILING OF SPECIMENS

- Using ASTM C1556 for profile layer depths
 - $_{\odot}$ All specimens are profiled until reinforcement is reached
 - $_{\odot}$ Intervals for 0.40 w/cm for lab cast blocks
 - Intervals were 1mm thicker starting on layer 2 than in C1556 for deck cores due to smaller sample cross section area
- Using ASTM C1152 for Acid-Soluble Chloride Testing

PROFILING SETUP

TITRATION PROCESS/SETUP

Titration Setup

* Mass value seen is tray mass used to determine approximate mass of powder collected from profiling

LAB SPECIMEN CHLORIDE PROFILE

materials and structure laboratory at NJIT

30 NJIJ

CORE SAMPLES PROFILE ANALYSIS

 Recent cores show greater chloride ingress but less at layers closer to the surface

31

By reinforcement chloride values for both are below 0.1%

COMBINED CHLORIDE PROFILES

DIFFUSION COEFFICIENTS

Uncrac	ked Lab Spe	cimens D	iffusion C	Coeffic	cient	t and S	urfa	ce Chlo	ride Con	ten	t	
				1.5 Brir	% าe	3.0% Brine		4.5% Brine	6.0% Brine		9.0% Brine	
C _{s;} Chloride content at exposed face			[mass %]	0.52	20	0.804		0.823	0.830		1.140	
D _{app,C;} Apparent coefficient of chloride diffusion			[mm²/yr]	89.0	9.037 81.336 74.645 1		136.302	8	87.950			
			[m ² /s]	2.828	E-12	2.58E-1	2 2	.37E-12	4.32E-12	2.	2.79E-12	
Cracke	ed Lab Spec	imens Dif	fusion Co	efficie	ent a	and Su	rface	e Chlori	de Conte	ent		
					% าe	3.0% Brine		4.5% Brine	6.0% Brine		9.0% Brine	
C _{s;} Chloride content at exposed face [mass %]				0.46	69	0.606		0.732	1.072		0.918	
D _{app,C} ; Apparent coefficient of chloride [mm ² /yr]				259.2	201	249.78	8 2	232.969 199.418		4	435.382	
diffusion			[m ² /s]	8.228	E-12	7.92E-1	2 7	.39E-12	6.32E-12	1.	1.38E-11	
	Deck Co	res Diffusio	on Coefficie	ent and	d Sur	face Chl	oride	e Conter	nt			
		MidSpan (4 months)	Fixed E (4 mon	End ths)	Mi (13 n	dSpan nonths)	Fix (13 r	ed End months)	MidSpan months	(17)	Fixed (17 mo	
hloride content at exposed face	[mass %]	ss %] 0.706		6	0.	.221	0.231		0.293		0.257	
parent coefficient of	[mm²/yr]	350.94	206.7	71 75		0.07	48	87.07	281.21		272.59	
chloride diffusion	[m²/s]	1.11E-11	6.55E-	12	2.38E-11		1.54E-11		8.92E-12		8.64E	

1.5% BRINE CHLORIDE FIT

34 11 1

CHLORIDE CONTENT FINDINGS

- Chloride content was greater in lab specimens subjected to higher brine concentrations
- Similar chloride content near surface, greater in cracked at depth
- Apparent coefficient of diffusion was similar for all uncracked specimens
- Apparent coefficient was greater for tested cracked specimens
 Chloride profile fit equation not representative
- Deck cores show high chloride ingress at earlier testing times
 Ores taken from similar but different locations

ONGOING WORK

- Testing other concrete mixture designs
- Testing other rebar types
- Model developed from experimental data for chloride content and corrosion current

THANK YOU / QUESTIONS?

