UHPC Overlays for Bridge Preservation – Lessons Learned

New Jersey Department of Transportation

Jess Mendenhall

Samer Rabie

Bureau of Structural Engineering

Structural Value Solutions (SVS)

Overview – NJDOT Overlay Research Projects

- Pilot project to investigate UHPC overlay
- Ultra-High-Performance Concrete (UHPC) as a thinbonded overlay
- Focus on rehabilitation and increased service life of bridge decks.
- 4 Bridges
- ~48,000 SF deck area
- 2 Contracts (North/South)

Background

- Thin overlays are suitable to seal existing or new decks as surface treatment without a major change in the roadway profile.
- Concrete overlays not often used by NJDOT in recent years.
- UHPC overlay is high cost but offers potential life cycle cost benefits (\$\$)
- NJDOT is in the Demonstration and Assessment phases with pilot projects.

Background

TO TRANSPORT

<u>Advantages</u> of UHPC overlays published include superior bond strength, compressive strength, lower permeability, more resistant to freeze thaw-damage, good abrasion resistance, rapid cure times, etc...

.. Many ideal properties for a deck surface.

Disadvantages:

- Material cost for UHPC is high; Bids for this project yielded an average cost of \$270 to \$410/SY or \$35 to \$46/SF (overlay only)
- Fresh UHPC does not bond well to hardened UHPC careful consideration for joint construction is needed, including reinforced staging joints.
- Limited test data for construction materials to determine their ability to perform well with UHPC
- The NJ construction force is not familiar with the use of UHPC <u>as an overlay</u>.

Bridge Selection Process

Ultra-thin High Performance Concrete Overlay Rt 159 over Passalc Rt. 57 over Hances Brook Rt 24 over Park Ave Newark Turnplk 1-78 over, Tributary to Dea 195 over S. Broad Street and Arei over Mantua Crea Rt 49 over Cohansey Rive 5 10 20 Miles +++++++

- Considerations: condition ratings (good condition), load ratings, deck chloride content, construction staging and traffic volumes, existing overlay depths
- Eight (8) structures fully evaluated/tested, four (4) were advanced
- Deck slab ages from 10 years up to 40 years
- Deck slab areas from 800 SF to over 20,000 SF
- All bridges had asphalt overlay
- Structures were eliminated due to load ratings (unexpected asphalt thicknesses discovered), heavy traffic volumes and/or difficulty in limiting number of stages

Bridge Selection Process

Initial Conditions & Testing

- Concrete cores were taken at each bridge:
 - overlay thickness
 - chloride contents
- Chloride Content:
 - ensure deck concrete to remain isn't overly contaminated
 - provide baseline data for future testing
 - NJDOT consider the threshold to initiate corrosion based on chloride content to be 2.0 pounds per cubic yard (PCY).
- Ground penetrating radar (GPR):
 - estimate area of deck repairs
 - increase confidence in the overall condition of the deck.

Chloride Content Test Results (Maximum Chloride Content)

Site No.	Structure Name	Acid Soluble Chloride (PCY) 0.75"-1.25" Depth	(PCY)
1	NJ 49 over Cohansey River	Eliminated	Eliminated
2	I-295 NB & US 130 NB over Mantua Creek	3.062	2.983
3	I-195 EB over S. Broad St WB (CR 524) & Arena Dr.	Eliminated	Eliminated
4	I-78 EB over Tributary to Dead River	Eliminated	Eliminated
5	NJ 57 over Hances Brook	0.529	0.438
6	I-280 WB over Newark Turnpike (CR 508)	3.794	3.821
7	NJ 24 Over Park Avenue	Eliminated	Eliminated
8	NJ 159 WB over Passaic River	0.438	0.407

Project Details

- Maintain grades (limit impacts, environmental impacts/permits)
- Staged construction (2-stage)
- <u>Sequence</u>: 1.) Existing overlay removal 2.) Hydrodemolition (¾") 3.) Deck Patching
 4.) Reconstruct deck joints (UHPC headers) 5.) UHPC Overlay (1-1/2" to 2-1/2")
 6.) Overlay or Diamond Grind

Contract Documents

- Structure Plans
- Performance Specifications
- Submittals
- Details
- Deck survey after existing overlay removal and after UHPC overlay installation
- Contract Pay Items

- The UHPC mixes consisted of a partial premix made by the supplier, sand, water, liquid admixtures, and steel fibers (3.25% of the total dry volume).
- To ensure the consistency of each UHPC batch, a procedure of overlay flow testing in accordance with ASTM C1437 was followed.
- With 3.25% steel fibers, the values of static and dynamic flows were 4-6 inches & 6-8 inches, respectively.

Description	Test Method	Acceptance Criteria
Compressive Strength	ASTM C1856	≥14 ksi at 28 days
Direct Tension Cracking Strength	FHWA-HRT-17-053	≥1100 psi
Direct Tension Sustained Post- Cracking Tensile Strength	FHWA-HRT-17-053	≥1250 psi
Direct Tension Bond Strength	ASTM C1583, bonded to an exposed aggregate concrete surface.	100% failure in substrate concrete with concrete compressive strength ≥ 4 ksi
Modulus of Elasticity	ASTM C1856	≥ 6500 ksi
Long-Term Shrinkage	ASTM C1856	≤ micro-strain
Rapid Chloride Ion Penetrability	AASHTO T277 / ASTM C1202	≤ 250 coulombs
Scaling Resistance	ASTM C672	Y ≤ 3
Freeze-Thaw Resistance	ASTM C1856	Relative Dynamic Modulus of Elasticity ≥ 95%
Alkali-Silica Reaction	ASTM C1260	Innocuous

Test Slabs

UHPC Overlay Mockup Tests : Per the contract documents, contractors were required to successfully place a 4'x12'x3" deep rectangular test slab of UHPC with a grade of 8% in the longitudinal direction.

Construction : General Contractors vs. Specialized UHPC Contractors

- A specialized contractor brings in prior experience placing UHPC, has established relationships with UHPC suppliers, and has specialized UHPC equipment.
- More contractors are expected to join this industry allowing more competition and competitive bid pricing.
- The most crucial element is the mixing and establishing the correct amount of UHPC fluidity to ensure the UHPC holds the grade of the deck.
- Specialized UHPC pavers are available for purchase by any contractor.
- As long as the documents require the appropriate measures be taken by the contractor along with the quality control requirements, the desired end product should be attainable by a general contractor or a subcontractor.

Construction Submittals

NJDOT UHPC Overlays

NJDOT UHPC Overlays

Construction: Headers and Curing

- Ensure proper curing in accordance with the approved procedures to prevent dehydration cracks.
- For UHPC Headers, Contract B used a semithixotropic mix while Contract A used a self-consolidating and self-leveling mix.
- Self-consolidating UHPC is preferred for the full-depth UHPC header placement.
- Consideration of partial depth UHPC headers or HPC headers with UHPC over the top should be included for individual projects.
- Specify water tight forms, top forms, and a minimum ¼" overfill of UHPC followed by grinding the surface per the specifications.

Final Product

- Surface defects were addressed before asphalt paving, out of an abundance of caution, these locations were identified for future monitoring.
- UHPC slurry with no fibers was placed in any identified air voids.
- On one structure the UHPC overlay serves as the final riding surface.
- UHPC overlay surface finish acceptance criteria, beyond the basic rideability requirement, should be added to the specifications to improve the quality of exposed UHPC overlay surfaces.
- An image of the desired surface in the contract documents would help reduce confusion.
- In the contract documents define an overpour thickness as a minimum of $\frac{1}{2}$ " to $\frac{1}{2}$ ".

NJDOT UHPC Overlays

• Asphalt overlays on top of UHPC will be avoided especially as the performance evaluation of the material is still on-going.

Future Work

- A long-term testing program is presently being developed to gather performance data in the assessment phase.
- Incorporating UHPC for several applications in the new design manual, including P&R.
- After data collection and lessons learned are finalized, Standard Specifications will be revised.
- Further investigation, performance data, and Life Cycle Cost analysis.
- Additional UHPC overlay applications.

Shank You

- Contacts for further Questions:
 - NJDOT Samer Rabie (<u>Samer.Rabie@dot.nj.gov</u>)
- Acknowledgements:
 - NJDOT Ali Najem, Pranav Lathia, Mike Kasbekar
 - FHWA Zach Haber & Ben Graybeal
 - WSP Steve Esposito, Andy Foden, Jordy Padilla
- UHPC Overlay Research Projects Awarded FY 2020 Contractors:
 - Agate Construction Co., Inc. of Clermont, NJ
 - Joseph M. Sanzari, Inc. of Hackensack, NJ