PREDICTING TRAFFIC SPEED FOR NEW JERSEY FREEWAY WORK ZONES – A DEEP LEARNING APPROACH

ABDULLAH SHABAREK, PH.D., PE

NJDOT RESEARCH SHOWCASE OCTOBER 2021

Background & Problem Statement

Frequent Road Maintenance
Accounts for 24% of non-recurrent congestion
Accounts for 10% of the overall congestion
Delay at Upstream segments including connected freeways

Objective

Developing a sound model to Predict Traffic Speed under work zone conditions on both connected and mainline freeways

Work Scope

New Jersey Freeways
Work zone conditions
10-miles upstream work zone
Data between 2014 and 2019
CNN and Deep ANN

Data Collection

Background & Problem Statement

No well-designed model to predict traffic speed on the connected freeways. (Overfitting issues)
 CNN and Deep ANN models

Pros & Cons of Modeling Approaches

Model Type	Advantages	Disadvantages
Parametric Models	TransferabilityScalability	Data distributionSpatial-temporal data
	• Inexpensive	
Simulation	• High fidelity	 Specific work zone
Models		• High computation Power and Time
		• High calibration time
Non-	• Scalability	• Data dependency
Parametric	• Extensibility	• Structure configuration
Models	• Less computational time	
	• No data distribution	

Tools for Work Zone Congestion Prediction

Tool	Inputs	Outputs	Modeling Approach
FlagSim	Time and location of	Traffic volume	Parametric
	work zone	• Queue length	
		• Delay	
Web-based Work Zone		Delay cost	Parametric
Traffic		Queue length	
LCDSS		• Queue length	Parametric
WIMAP-P	Time, location of work	Delay cost	Non-parametric
	zone, and values of	• Queue length	
	time.	• Predicted traffic speed	
RILCA	Time and location of	Queue length	Parametric
	work zone only for the GSP and NJTP.	• Delay	

Deep Learning

- Two or more hidden layers
- Number of neurons
- ► Overfitting
- Dropout is a regularization technique that is applied in hidden layers for the purpose of reducing the overfitting problem

Developed CNN Results

I-mile work zone on I-287 SB
One Lane closure over 4 lanes
Milepost 39 and Milepost 38
From 3:00 PM till 09:00 PM on 07/08/2015
I-80 as a connected route

Case Study (Location)

Heat map of (a) passenger cars and (b) trucks distribution for I-287 SB Source: New Jersey Congestion Management Systems

Methodology (CNN)

CNN Layers CNN Output CNN Inputs (Q₀ Inputs) Lth Layer 1st Layer 2nd Layer (Q_L Neurons) (Q1 Neurons) (Q2 Neurons) y_1^2 y_{1}^{0} y_1^L y1 Convolutional 2nd Layer Convolutional 1st Layer (Output Dimension $Q_2 * Q_1/z$) (Output Dimension $Q_1 * Q_0$) y22 y_2^L ¥ y21 y_3^L y_2^0 y31 y_{3}^{2} $y_{Q_0}^0$

Heat map of (a) passenger cars and (b) truck volumes of I-80 Eastbound Source: New Jersey Congestion Management Systems.

Heat map of I-287 SB of (a) Actual speed reported from INRIX (b) predicted speed from the CNN Model (c) predicted speed from the model of WIMAP-P

Heat map of traffic speed without work zone conditions for (a) I-287 SB (b) I-80 WB and (c) I-80 EB

Heat map of traffic speed on I-80 WB from (a) the CNN prediction model (b) the actual traffic speed reported from INRIX.

Heat map of traffic speed on I-80 EB from (a) the CNN prediction model (b) the actual traffic speed reported from INRIX

Heat map of absolute error of the CNN results again the actual speed for (a) I-287 SB (b) I-80 WB and (c) I-80 EB

21

The RMSE values in variation of distance to work zone

22

Two main categories of TMC segments are distinguished: Type 1, which is the TMC segments on the mainline immediate upstream to the onramp and Type 2, which is all the other TMC segments.

Type of TMC	Model	Number of	RMSE (mph) (% of testing data)		
segment		Lanes	Shoulder Closure	One Lane	Two Lane
				Closure	Closure
Type 1	Deep ANN	2	11.2 (5%)	9.5 (13 %)	NA (0 %)
		3	12.3 (8%)	9.1 (12 %)	10.5 (6 %)
		4	14.9 (4%)	11.0 (10 %)	11.3 (3 %)
	CNN	2	10.0 (5%)	9.2 (13%)	NA (0%)
		3	11.6 (8%)	8.2 (12%)	9.9 (6 %)
		4	14.1 (4%)	10.3 (10%)	10.6 (3 %)
Type 2	Deep ANN	2	6.4 (95%)	5.5 (87%)	NA (0%)
		3	5.9 (92%)	5.4 (88%)	7.3 (94 %)
		4	7.0 (96%)	5.7 (90%)	7.7 (97 %)
	CNN	2	6.0 (95%)	5.3 (87%)	NA (0%)
		3	5.4 (92%)	4.8 (88%)	7.2 (94 %)
		4	6.4 (96%)	5.8 (90%)	7.5 (97%)

Applications

Quantify the congestion costs (i.e., spatio-temporal)
User delay costs
User delay Vs. agencies costs
Queue warning systems

Conclusions

Connected roadways
CNN outperforms Deep ANN and WIMAP-P
Congestion mitigation plans
Proximity to the mainline links immediate upstream segments
Database

Future Research

 Optimal work zone scheduling with rerouting plans
 Work zone staging optimization
 Combination of work zone and accidents prediction modulus.

