

Modeling and Mitigation of Thermal-Induced Reflective Cracking in Asphalt Concrete Overlay

INTRODUCTION

- > Asphalt concrete (AC) overlay is an efficient and effective method to rehabilitate deteriorated rigid pavements and restore structural capacity
- > The diurnal and seasonal temperature cycles generate contraction and curling effect in the underlying concrete slabs, tearing apart AC overlay gradually
- > Reflective cracking belongs to the category of fatigue cracking, which can be studied by fatigue model methods and mechanistic methods
- > Commonly used mitigation strategies including increasing overlay thickness, stress-absorbing interlayer, geosynthetic etc.

OBJECTIVE

- > Developing finite element (FE) models to simulate thermal-induced reflective cracking in asphalt concrete overlay
- \succ Predicting crack initiation and propagation by stress-based fatigue model and Paris' law
- > Analyzing the effectiveness of two mitigation methods, increasing overlay thickness and applying stress-absorbing interlayer

METHODOLOGY

- > FE models for pavement responses
 - Displacement-controlling loading model
 - Real thermal loading model

Pengyu Xie¹, Hao Wang² 1. Graduate Research Assistant, 2. PhD, Associate Professor, Rutgers, The State University of New Jersey

> Cracking Initiation:

$$N_f = \left(\frac{S_v}{\sigma}\right)^n$$
 Stress-Based Fatigue Model

Derived from low-temperature and low-frequency bending fatigue tests (Lv et al, 2017)

Cracking Propagation:

 $\frac{da}{dN} = A \cdot (\Delta J)^n$ Modified Paris' law

A and n are derived from material properties and loading frequency

MODEL CALIBRATION AND VALIDATION

- > The derived displacement-controlled models were calibrated and validated with field test at NAPTF
- Temperature-Effect Simulation System (TESS):
- AC overlay, concrete slabs, subgrade
- Overlay thickness: 3-inch and 6-inch
- Loading: displacement-controlled slab movement
- \succ Tensile strains along depths were used to calibrate overlay-slab interface contact stiffness:

NAPTF section (Yin, 2017)

- ➤ The proposed model can roughly catch the trend of thermal-induced =reflective cracking
- > The perfect match is meaningless because of $\ddot{}$ the uncertainty of fatigue process

ANALYSIS OF CRACKING MITIGATION

> The derived real thermal loading model were used to analyze temperature effect and mitigation strategies Pavement temperature predicted from climate data

Reflective cracking cycles for control sections

RUTGERS

 \succ The tensile strain in interlayer is larger than the counterpart in control section, but it does not generate cracks due to higher fracture energy \succ The critical stress at overlay bottom is reduced with the employment of interlayer

applying interlayer