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EXECUTIVE SUMMARY 

The predictive models provided by the Highway Safety Manual (HSM) are based on 
safety performance functions (SPFs), which are statistical regression models based on 
observed crash data from similar facility types that estimate the predicted average crash 
frequency for the base conditions. To account for differences between the base 
conditions and the specific conditions of a facility site, crash modification factors (CMFs) 
are utilized to adjust the prediction to account for the geometric design and traffic 
control features of the specific site. 
 
The SPFs in the HSM were developed using historic crash data collected over a 
number of years at sites of the same facility types in various states. To make the SPFs 
better accommodate local data, the first strategy is to calibrate SPFs provided in HSM 
and the second strategy is to develop location-specific SPFs regardless of the predictive 
modeling framework in the HSM. 
 
The main objective of this research project is to (1) calibrate the SPFs provided in the 
HSM using New Jersey (NJ) data and (2) develop new NJ-specific SPFs as necessary. 
 
The facilities considered for this research project include the following types: 
 
Facility  Segments Intersections 

Rural Two-Lane 
Two-Way Roads 
 

Undivided rural 2-lane 2-way 
segments (R2U) 

Unsignalized 3-way intersections (R23ST)  

Unsignalized 4-way intersections (R24ST) 

Signalized 3-way intersections (R23SG)  

Signalized 4-way intersections (R24SG) 

Rural Multilane 
Highways 

Undivided rural multilane 
highways (R4U) 

Unsignalized 3-way intersections (RM3ST)  

Divided rural multilane 
highways (R4D) 

Unsignalized 4-way intersections (RM4ST) 

Signalized 3-way intersections (RM3SG)  

Signalized 4-way intersections (RM4SG) 

Urban and Suburban 
Arterials 

Undivided 2-lane arterials 
(U2U) 

Unsignalized 3-way intersections (U3ST)  

Undivided 3-lane arterials with a 
center two-way left-turn lane 
(U3T) 

Unsignalized 4-way intersections (U4ST) 

Undivided 4-lane arterials 
(U4U) 

Signalized 3-way intersections (U3SG)  

Divided 4-lane arterials (U4D) Signalized 4-way intersections (U4SG) 

Undivided 4-lane arterials with a 
center two-way left-turn lane 
(U5T) 
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Several tasks were completed to achieve the main project goals. An outline of this 
report follows, including succinct descriptions of these tasks. 
 
The background on the SPF calibration and development process is presented in the 
Background subsection of the Literature Review. The required and desired data for 
calibration according to the HSM are presented in Table 2 of the Data Requirements 
subsection. The research team conducted an in-depth review of the studies in the 
literature that focused on the calibration of the SPFs used in the HSM and the 
development of new SPFs. A detailed review of these studies and the related calibration 
and estimation issues are presented in the Previous Work subsection. The key findings 
from this comprehensive literature review are presented in the Findings subsection. The 
team also interviewed researchers who conducted similar research projects for the 
Departments of Transportation (DOTs) of Pennsylvania, South Carolina, Missouri, 
Kansas, Kentucky, and New York, as discussed in the Interviews subsection. 
 
It should be noted that the process of SPF calibration and/or development is highly data 
driven. There are 60 variables used in the HSM predictive models, 41 of which are 
required, and the remainder of which are desirable. The majority of these 60 variables 
are not commonly collected, such as the number of driveways by type, horizontal and 
vertical curvature, number of left- and right-turn lanes at intersections, parking 
information, etc. Because collecting or extracting these data and also integrating data 
from various sources require a considerable amount of time and man-hours, it is crucial 
to acquire as much data as possible automatically from existing databases. This 
requires identifying all possible relevant databases maintained by the New Jersey 
Department of Transportation (NJDOT) and automatically extracting the 
required/desired data without having to spend excessive amounts of time on manual 
extraction.  
 
The research team, being experienced with many of the databases maintained by 
NJDOT, was able to identify the available data sources. As mentioned in the Available 
Data Sources section, existing data are grouped into three categories by type: (1) traffic 
volume, (2) roadway features, and (3) roadway crashes. Information regarding each 
data source is summarized in Table 4.   
 
Traffic volume data include the sensor database maintained by the New Jersey Traffic 
Monitoring Program at NJDOT, and hourly turning movement counts collected at 
various intersections.  
 
Roadway features data were extracted from three data sources: the Straight Line 
Diagrams (SLD) database, Geographic Information Systems (GIS) maps, and Google 
Street View. NJDOT’s SLD database is the richest source of information for roadway 
features. This database was provided by NJDOT in MS Access® format. It includes 
various tables on different geometric and operational aspects of NJ roadways, as shown 
in Table 5.  
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The crash data were provided by NJDOT for 2011 to 2015. Table 6 lists the key data 
elements used as part of this study. Note that the database only includes the reportable 
crashes. A reportable crash is one that results in the injury or death of any person, or 
damage to property of any one person in excess of $500. As discussed in the Findings 
subsection of the Literature Review, some studies discussed the impact of the crash 
reporting threshold on the scale of the calibration factors. Crash data from Washington 
and California were used in developing the HSM predictive models, and any deviation 
from the baseline crash reporting threshold would affect the estimation results for 
property damage crashes.  
 
Also note that the location of a crash, namely the Standard Route Identifier (SRI) and 
milepost, is usually the most incomplete part of the crash database, making it difficult, if 
not impossible, to provide accurate location data. Similar issues were reported by other 
researchers, as mentioned in the Literature Review section. 
 
The Data Preparation and Cleaning section describes the cleaning process for the three 
available datasets described above. This section also discusses various observed 
inconsistencies and inaccurate information in the available data sources. The most 
time-consuming tasks in this process were preparing the final intersection database and 
crash databases.  
 
As to the intersection database, correct identification of intersection types and their 
locations are crucial because intersections are used both in determining homogeneous 
roadway segments and generating the list of intersections per facility type. To be 
specific, when the task is to determine homogeneous roadway segments, any point 
along the roadway that would make it possible for vehicles to make a turn is labeled as 
an intersection. In addition to the conventional intersections, median left-turns/U-turns, 
circles, jug handles, and interchanges are also deemed as intersections. In contrast, 
when the task is to generate the list of intersections per facility type, the focus is to 
identify only the conventional 3-way and 4-way intersections, and to dismiss any other 
types of intersections.  
 
As to preparing the crash database, as mentioned above, the crash location information 
is usually the most incomplete part of the database. Crash entries are often missing SRI 
or milepost information, or latitude and longitude readings. Latitude and longitude 
readings of crashes are of utmost importance for assigning crashes to intersections. To 
determine whether a crash is intersection-related, one must determine if its location is 
within 250 ft. of the intersection, as suggested the HSM (2). The milepost information for 
crashes is deemed too coarse for such calculations. To assign crashes to 
homogeneous segments, however, SRI and milepost information is required, because 
determining which segment a crash should be assigned to is not straightforward when 
using the latitude and longitude readings. Inspection of the available crash database 
revealed that even though latitude and longitude information is available for nearly 95 
percent of crashes, there are many instances in which the SRI or milepost information is 
missing. Table 14 shows the statistics for missing information in the crash database for 
2011 to 2015. The research team developed a code in C programming language to 
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determine the missing SRI or milepost information using the available latitude and 
longitude data, as shown in Figure 11. 
 
Once the available datasets were gathered and cleaned, the research team developed 
a computer code in R programming language to read and process the compiled 
database to (a) filter out inconsistent data entries, (b) identify facility types, (c) execute 
the roadway segmentation process, (d) assign crash statistics for each facility, and (e) 
generate a complete database for each facility type to be used in calibration and/or 
development of SPFs. The generic procedure for generating an intersection database 
per facility type is shown in Figure 12. Generating a homogeneous roadway database 
for each facility was a more challenging process than that for an intersection database. 
A homogeneous segment starts at an intersection or at any point where various 
geometric and operational features of the roadway change at either direction of the 
facility. The generic procedure for generating homogeneous database per facility type is 
shown in Figure 13.  
 
In addition to the automatically generated data, the research team conducted an 
extensive data extraction process to meet the data requirements of the HSM. The 
following table lists the data elements manually extracted by the research team because 
they were required by the HSM but not available in the existing databases. 
 

Facility Type Extracted Data 

R2 intersections  
 

Number of left- and right-turn lanes 
Presence of lighting 
 

Urban and suburban intersections 
 

Number of left- and right-turn lanes 
Presence of right-turn-on-red signs 
Presence and type of left-turn signal phasing 
Presence of lighting 
 

Urban and suburban segments 
 

Number of driveways by type 
On-street parking by type 

 
As mentioned in the Findings subsection of the Literature Review section, among the 
required dataset, the horizontal curvature data (i.e., curve radius and length) for two-
lane two-way rural roadways stand out as the most problematic. With few exceptions, 
state DOTs do not have a curvature dataset in a usable format that can be easily 
integrated into the process of finding homogeneous segments. The lack of this dataset 
led researchers to assume default values for horizontal curvature CMFs, omit sections 
with horizontal curvature, or manually extract this information using Google Earth™ 
(e.g., references or built-in plans). 
 
The research team developed a clustering method for automatically estimating 
horizontal curvature data and CMFs using GIS roadway shapefiles. The clustering 
method identifies distinct sections on a roadway, either curved or tangent, based on the 
proximity of the approximated curvature values of data points from GIS roadway 
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centerline shapefiles, and calculates horizontal curvature data and the corresponding 
CMFs. In fact, a comparison of this clustering method with the manual extraction 
method and the use of mobile asset vehicles was presented in a journal paper (78). The 
results of this paper showed that the CMFs estimated by the clustering method were 
within 12.2 percent and 15.5 percent of those produced by the mobile asset vehicle and 
the manual data extraction method, respectively. In addition, the sensitivity of the 
manually extracted horizontal curvature data was examined by conducting 15 additional 
independent trials. The average percent difference in the calculated CMFs between 
trials was 15.5 percent. The study therefore concluded that the clustering method can 
produce CMF estimates as accurate as those yielded by the two other methods and can 
do so much more efficiently in terms of time and cost.  
 
The table below presents the sample size for each facility type used for calibration 
and/or development of SPFs for segments and intersections separately.  
 
It should be mentioned that the dataset used for calibration and development includes 
not only state but also local roads in New Jersey. 
 

SEGMENTS 

Facility Type Sample Size SPF 

R2U  756 Calibration and Development 

R4U 32 Calibration 

R4D 34 Calibration 

U2U 459 Calibration and Development 

U3T n/a n/a 

U4U 514 Calibration and Development 

U4D 387 n/a 

U5T n/a Calibration and Development 

INTERSECTIONS 

Facility Type Sample Size SPF 

R23ST 314 Calibration and Development 

R24ST 149 Calibration and Development 

R23SG 15 Development 

R24SG 45 Calibration and Development 

RM3ST 3 n/a 

RM4ST 1 n/a 

RM3SG 0 n/a 

RM4SG 6 n/a 

U3ST 227 Calibration and Development 

U4ST 121 Calibration and Development 

U3SG 164 Calibration and Development 

U4SG 209 Calibration and Development 

 
Model calibration in the HSM is performed by applying a multiplicative factor to the 
given SPF so that the aggregate number of predicted crashes is equal to the aggregate 
number of observed crashes within a jurisdiction. A calibration factor allows the SPF to 
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keep its original model form. As discussed in the appendix to Part C of the HSM, 
selected samples are used to find the calibration factor that will make the aggregate 
predicted crash frequency equal to the observed total in the jurisdiction. The HSM 
recommends using a minimum sample size of 30 to 50 sites (2).  
 
As seen in the table above, among the original facility types, two segment types, namely 
U3T and U5T, and rural multilane intersections could not be included in the calibration 
and development process due to lack of data. As explained in the Urban and Suburban 
Segments section, U3T and U5T segment types that include center two-way left-turn 
lanes are not indicated in the SLD database. A future version of the SLD database 
should have a separate table indicating whether roadway segments include two-way 
left-turn lanes. Regarding rural multilane intersections, the team could not identify an 
adequate number of such intersections for calibration. Therefore, rural multilane 
intersections are not included in the report. Similar data issues were observed for rural 
multilane segments. As noted in the Multilane Segments section, the scarcity of 
multilane rural roadway data is to be expected because NJ is a densely populated state, 
and, based on the SLD database, 86.8 percent of its roadway segments are in urban 
areas.    
 
To calculate a calibration factor, the observed crash frequency and the predicted crash 
frequency for each intersection and segment are required. The observed crash 
frequency was calculated for each segment as explained in the Processing Data 
section. The predicted crash frequency can be calculated using the SPF and the 
corresponding CMF values given in the HSM.   
 
The Calibrator tool developed by the Federal Highway Administration (FHWA) was used 
to calculate the calibration factors and measure their goodness of fit (77). 
 
The table below presents the calibration factors calculated for each facility type. 
 

SEGMENTS  

Facility Type Calibration Factor Standard Error Coefficient of Variation 

R2U  1.55 ±0.12 0.08 

R4U 1.12 ±0.42 0.38 

R4D 1.70 ±0.80 0.47 

U2U 1.264 ±0.14 0.11 

U3T n/a n/a n/a 

U4U 1.097 ±0.15 0.13 

U4D 1.596 ±0.21 0.13 

U5T n/a n/a n/a 

INTERSECTIONS  

Facility Type Calibration Factor Standard Error Coefficient of Variation 

R23ST 0.88 ±0.08 0.09 

R24ST 0.88 ±0.11 0.13 

R23SG* - - - 

R24SG 0.85 ±0.16 0.18 

RM3ST n/a n/a n/a 
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RM4ST n/a n/a n/a 

RM3SG n/a n/a n/a 

RM4SG n/a n/a n/a 

U3ST 2.61 ±0.29 0.11 

U3SG 3.60 ±0.36 0.10 

U4ST 1.66 ±0.25 0.15 

U4SG 4.25 ±0.40 0.09 
Note: *R23SG intersection type is not included in the HSM. 

 

In addition, to assess the validity of the calculated calibration factors, the team used 

cumulative residual (CURE) plots, which are simply graphs of the cumulative residuals 

(observed minus predicted crashes) against variables of interest. The residuals between 

the estimated and observed values are assumed to be independent random variables. It 

is presumed that the CURE plots should be within the expected limits of an unbiased 

random walk, i.e., plus/minus two standard deviations. CURE plots for each facility type 

are presented in their respective sections throughout the report.  

Using the same data used for calibration, the research team developed NJ-specific 
SPFs for facilities with a sufficient number of data points using the crash data from 2011 
to 2015. SPFs were estimated based on the negative binomial model suggested by the 
HSM. The model estimation was performed in R statistical package. 
 
The tables below present the SPFs developed for segments and intersections per 
facility type and crash type, where applicable, respectively. 
 

Segment  Crash Type Developed SPFs 

R2U Total 𝑁𝑇𝑂𝑇 𝑅2𝑈 = 𝑒𝑥𝑝[−6.41 + 0.83. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 0.86. 𝑙𝑛(𝐿)] 

U2U 

Total 𝑁𝑇𝑂𝑇 𝑈2𝑈 = 𝑒𝑥𝑝[−9.798 + 1.188. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−14.411 + 1.641. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−3.977 + 0.435. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4U 
 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑈 = 𝑒𝑥𝑝[−12.01 + 1.432. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−13.794 + 1.59. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−6.961 + 0.751. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4D 

Total 𝑁𝑇𝑂𝑇 𝑈4𝐷 = 𝑒𝑥𝑝[−3.00 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−3.363 + 0.558. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−4.687 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

 
 
Details regarding the coefficients and the statistical significance of the estimates can be 
found in the relevant sections throughout the report. 
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It should be noted that the calculated calibration factors and the developed SPFs are 
being embedded in the safety analysis spreadsheet used by the NJDOT staff. The 
spreadsheet is being modified so that users can either select the SPFs provided in the 
HSM and apply the calculated calibration factors or simply use the NJ-specific SPFs 
developed by the research team. 
 
Intersection  Crash Type Developed SPFs 

R23ST Total 𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−6.139 + 0.498. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.296. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]      

R23SG Total 𝑁𝑠𝑝𝑓 3𝑆𝐺 = 𝑒𝑥𝑝[−12.140 + 1.184. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.281. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]           

R24ST Total 𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−3.716 + 0.159. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.426. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]      

R24SG Total 𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.811 + 0.345. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.526. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]            

U3ST 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−5.855 + 0.434. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.384. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−6.892 + 0.483. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.429. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−4.895 + 0.283. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.219. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U3SG 
 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−7.553 + 0.693. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.321. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.019 + 0.713. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.336. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.093 + 0.676. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.141. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Vehicle-
Pedestrian 

𝑁𝑝𝑒𝑑 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−18.636 + 1.145 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.0898 × 𝑃𝑒𝑑𝑉𝑜𝑙] 

U4ST 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.269 + 0.743. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.343. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.959 + 0.752. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.392𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.359 + 0.724. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.142. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U4SG 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−9.593 + 0.968. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.308. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−10.307 + 1.022. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.317. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−5.804 + 0.424. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.173. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Vehicle-
Pedestrian 

𝑁𝑝𝑒𝑑 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−18.935 + 1.245. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.874. ln (𝑃𝑒𝑑𝑉𝑜)𝑙

− 0.135. 𝑀𝑎𝑥𝐿𝑎𝑛𝑒𝑠] 

 
In closing, it should be emphasized that calibration and development of SPFs are highly 
data driven tasks and that the quality of data is of utmost importance to ensure the 
validity of results. The observed issues related to the existing databases are presented 
in the Data Preparation and Cleaning section. The following is a brief of list of the most 
important issues that should be addressed by NJDOT: 
 

 Although the SLD database is the richest source of information on roadway 
features, as with any database, it is not without errors. The research team 
detected errors or inconsistent information in the pavement width, highway type, 
number of lanes, and shoulder type tables.  

 As mentioned above, there is no indication in the SLD database whether 
roadway segments include two-way left-turn lanes in the center. The lack of such 
information prevents users from identifying U3T and U5T segment types. 
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 Information for intersections is provided in two separate tables, namely 
pt_intersection and pt_int_approach. Some overpasses are coded as 
intersections in the database. Furthermore, the team found some incorrect data 
on control type and number of legs. The research team developed a 
sophisticated programming code to correct some of these errors with the use of 
NJ GIS roadway maps. 

 The research team was not able to find any available database on driveways. 
This information is required for urban and suburban segments. The team 
conducted a manual data extraction to gather this information. 

• The location information in the crash database poses a significant problem. As 
mentioned in the Data Preparation and Cleaning section, a significantly high 
percentage of crashes are missing SRI and milepost information. In addition, 
very few crashes include latitude and longitude information entered by police. 
NJDOT post-processes the raw crash data and geocodes the latitude and 
longitude of crashes using any available location-related information such as 
cross street names, addresses, and SRI and milepost, if reported. Following this 
geocoding process nearly 95 percent of crashes are assigned latitude and 
longitude values. It should be noted that this process yields the most probable 
coordinate readings, and that deviation in location by even small distances 
makes a difference in labeling a crash as intersection- or segment-related.  

• The linear referencing system (LRS) table of NJ roadways includes information 
such as roadway SRI, start milepost, end milepost, route type, etc. The research 
team found that the mileposts for some links are off by 0.01 to 0.09 miles. As per 
our e-mail correspondence with the Bureau of Information Management and 
Technology on May 14, 2019, it was determined that the LRS is out of date and 
the department is in the process of updating it.  
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INTRODUCTION 

Highway transportation has been the backbone of mobility and economic development 
in the U.S. and throughout the world, yet motor vehicle crashes have always been a 
leading safety issue on our roadways. For example, according to National Highway 
Traffic Safety Administration (NHTSA) motor vehicle crashes were the leading cause of 
death for age 11 and for every age 16 through 24 in 2014 (1). NHTSA’s mission is to 
reduce deaths and injuries from motor vehicle crashes. Although the number of fatal 
crashes in the U.S. has declined by 24 percent within the last decade, the total number 
of police-report crashes increased from 2011 to 2014, mostly driven by the increase in 
property damage crashes. In addition, the number of injury crashes increased from 
2013 to 2014 by 3.6 percent (1). According to the latest crash statistics for New Jersey 
(NJ)1, fatal crashes and total crashes increase by 3.3 percent and 4.0 percent, 
respectively, from 2013 to 2014, while injury crashes decreased by 3.5 percent.  
 
These statistics prove that there is still more work to be done to reduce the number of 
motor vehicle crashes. By relying on the abundant data sources related to traffic and 
motor vehicle crashes, state department of transportation (DOT) agencies have been 
utilizing science-based and state-of-the-practice methods and approaches to determine 
the causes of crashes and make reliable decisions on how to reduce their numbers.  
This new data-driven and scientific approach was initiated by the American Association 
of State Highway and Transportation Officials (AASHTO) in 1998 with the approval of its 
Strategic Highway Safety (SHS) plan, developed by the AASHTO Standing Committee 
on Highway Traffic Safety with the assistance of the Federal Highway Administration 
(FHWA), the National Highway Traffic Safety Administration (NTHSA), and the 
Transportation Research Board Committee on Transportation Safety Management, 
which has been the driving force in directing these safety-related efforts in the U.S. 
AASHTO’s SHS plan includes strategies in 22 key emphasis areas that affect highway 
safety. Each of the emphasis areas includes specific strategies and an outline of what is 
needed to implement each strategy. As a result of these efforts, in order to assist 
transportation agencies to integrate safety into their decision making processes, the 
Highway Safety Manual (HSM) was published in 2010, providing a comprehensive 
approach and a set of analytical tools and methods for the integration of safety 
considerations into highway planning, design, operations, and maintenance. The HSM 
outlines and provides examples of the following applications (2):  
 

 Identifying sites with the most potential for reduction in crash frequency or 
severity. 

 Identifying factors contributing to crashes and associated potential 
countermeasures to address these issues. 

 Conducting economic appraisals of potential improvements and prioritizing 
projects.  

 Evaluating the crash reduction benefits of implemented treatments. 

                                            
1 http://www.state.nj.us/transportation/refdata/accident/pdf/njcrash.pdf 
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 Estimating the potential effects on crash frequency and severity of planning, 
design, operations, and policy decisions. 

The HSM is composed of four sections. The third section of the HSM, Part C, provides a 
predictive method for estimating the expected number of crashes for base conditions, 
alternative conditions, or proposed new roadway designs. The predictive method is 
applied for a given time period, traffic volume, and geometric design characteristics of a 
facility. This predictive method is most applicable when developing and evaluating 
various solutions to reduce the number of motor vehicle crashes at a specific location. 
Currently, the HSM’s predictive model can be used for the segments and intersections 
of rural two-lane roads, rural multilane highways, and urban and suburban arterials. 
 
The predictive model provided by the HSM is based on the Safety Performance 
Function (SPF), which is a statistical regression model based on observed crash data 
from similar facility types and estimates the predicted average crash frequency for the 
base conditions. The estimate can also be categorized by crash severity or collision 
type distribution. To account for differences between the base conditions and the 
specific conditions of the facility site, crash modification factors (CMFs) are utilized to 
adjust the prediction to account for the geometric design and traffic control features of 
the specific site. 
 
SPFs in the HSM were developed using historic crash data collected over a number of 
years at sites of the same facility type in various states. Because the SPFs provided in 
the HSM were developed using data from different states, it is more than likely that they 
cannot be transferred directly for use in other locations and times. Thus, HSM’s 
predictive model often needs to be calibrated to capture local state or geographic 
conditions. Moreover, accident frequencies for similar facility types can also vary from 
one jurisdiction to another, since their locations differ in climate, driver population and 
characteristics, accident reporting threshold, accident reporting practices, and other 
contributing factors.  
 
To make the SPFs better accommodate the local data, two strategies are usually 
employed:  

 The first strategy is to calibrate SPFs provided in the HSM so that the contents of 
the HSM can be fully leveraged.  

 The second strategy is to develop location-specific SPFs regardless of the 
predictive modeling framework in the HSM. 

Objectives 

The main objective of this research project is to (1) calibrate the SPFs provided in the 
HSM using NJ data or (2) develop new NJ-specific SPFs as appropriate. The facility 
types considered for this research project include, but are not limited to, the following: 

 Rural two-lane roads   

 Rural four-lane divided roads   

 Rural four-lane undivided roads  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 Two-lane urban and suburban arterials   
 Three-lane (with center two-way left-turn lanes [TWLTL]) urban and suburban 

arterials   

 Four-lane divided urban and suburban arterials   

 Four-lane undivided urban and suburban arterials   

 Five-lane (with center TWLTL) urban and suburban arterials   
 Three-leg minor road stop-controlled intersections on rural two-lane roads  

 Four-leg minor road stop-controlled intersections on rural two-lane roads   
 Three-leg signalized intersections on rural two-lane roads (not addressed in 

HSM) 

 Four-leg signalized intersections on rural two-lane roads   

 Three-leg minor road stop-controlled intersections on rural four-lane roads   

 Four-leg minor road stop-controlled intersections on rural four-lane roads   
 Three-leg signalized intersections on rural four-lane roads (not addressed in 

HSM) 

 Four-leg signalized intersections on rural four-lane roads   
 Three-leg minor road stop-controlled intersections on urban and suburban 

arterials   
 Four-leg minor road stop-controlled intersections on urban and suburban arterials  

 Three-leg signalized intersections on urban and suburban arterials   

 Four-leg signalized intersections on urban and suburban arterials   

Table 1 presents the list of facility types for which the HSM current has specific SPFs. 
The table also shows the list of facilities that this study focuses on. 
 
Calibrating the SPFs used in the predictive models of the HSM requires data from a 
limited number of sites (for each facility type) from NJ, using the methods suggested in 
the Part C of the HSM. Developing NJ-specific SPFs provides more accurate results, 
but requires data from a larger sample of sites, and also involves the application of 
generalized linear models. Several tasks were completed to achieve the main project 
objective which is “to either calibrate the SPFs provided in the HSM using New Jersey 
(NJ) data or develop new NJ-specific SPFs.” These are: 

 Conducted an in-depth review of the studies in the literature that focused on the 
calibration of the SPFs used in the HSM and the development of new SPFs, and 
identified the related calibration and development issues.  

 Identified the key sources of data required for calibration and development of 
SPFs. These include roadway characteristics data, traffic volume data, and crash 
data.  

 Developed a computer code to read and process the compiled database to: (a) 
filter out inconsistent data entries, (b) identify facility types, (c) execute the 
roadway segmentation process, (d) assign crash statistics for each facility, and 
(e) generate a complete database for each facility type to be used in the 
calibration and/or development of SPFs. 

 Provided recommendations and activities that include: (a) improvements to data 
collection and recording practices that would lead to easier data extraction 
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required for the SPF calibration/development process, and (b) a workshop that 
demonstrates the step-by-step approach for using the SPFs for the New Jersey 
Department of Transportation (NJDOT) staff and other interested parties. 

Table 1: Facility types used in the HSM 

Rural Two-Lane Two-Way Roads 

Type  HSM NJ  Acronyms Definition 

Roadway 
Segments 

√ √ R2U Rural two-lane roads 

Intersections 

√ √ R23ST 
Three-leg minor road stop-controlled intersections on 
rural two-lane roads 

  √ R23SG 
Three-leg signalized intersections on rural two-lane 
roads 

√ √ R24ST 
Four-leg minor road stop-controlled intersections on 
rural two-lane roads 

√ √ R24SG Four-leg signalized intersections on rural two-lane roads 

Rural Multilane Highways 

Type  HSM NJ Acronyms Definition 

Roadway 
Segments 

√ √ R4U(RMU) Rural four-lane undivided roads 

√ √ R4D(RMD) Rural four-lane divided roads 

    R4F Rural four-lane freeways 

    R6+F Rural six+ lane freeways 

Intersections 

√ √ RM3ST 
Three-leg minor road stop-controlled intersections on 
rural four-lane roads 

  √ RM3SG 
Three-leg signalized intersections on rural four-lane 
roads 

√ √ RM4ST 
Four-leg minor road stop-controlled intersections on 
rural four-lane roads 

√ √ 
RM4SG(R4

4SG) 
Four-leg signalized intersections on rural four-lane 
roads 

Urban and Suburban Arterials 

Type  HSM NJ Acronyms Definition 

Roadway 
Segments 

√ √ U2U Two-lane urban and suburban arterials 

√ √ U3T 
Three-lane (with center TWLTL) urban and suburban 
arterials 

√ √ U4U(UMU) Four-lane undivided urban and suburban arterials 

√ √ U4D(UMD) Four-lane divided urban and suburban arterials 

√ √ U5T 
Five lane (with center TWLTL) urban and suburban 
arterials 

Intersections 

√ √ U3ST 
Three-leg minor road stop-controlled intersections on 
urban and suburban arterials 

√ √ U4ST 
Four-leg minor road stop-controlled intersections on 
urban and suburban arterials 

√ √ U3SG 
Three-leg signalized intersections on urban and 
suburban arterials 

√ √ U4SG 
Four-leg signalized intersections on urban and suburban 
arterials 
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The following section presents background on the HSM predictive methodology and the 
SPFs, along with an extensive review of the existing DOT studies.  
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LITERATURE REVIEW 

This section first presents background on the SPFs and the HSM’s predictive 
methodology.  

Background 

The HSM published by AASHTO provides quantitative tools in a useful form to facilitate 
improved decision making based on safety performance. SPFs, which are commonly 
developed to correlate traffic, geometric, and environmental characteristics with crash 
frequencies, are the fundamental components of the HSM. In the HSM, SPFs are 
functions of annual average daily traffic (AADT) and/or road length only, and provide 
estimates of the average crash frequency for a certain facility under base conditions.  
 
The HSM utilizes SPFs in two key applications for which they can be used by 
jurisdictions to make better safety decisions. One application is to use SPFs as part of 
“network screening” to identify sections that may have the best potential for 
improvements. Part B of the HSM is dedicated to this type of application. The second 
application is to use SPFs to determine the safety impacts of design changes at the 
“project level.” Part C of the HSM, which is composed of Chapters 10, 11, and 12, is 
dedicated to this type of application.  
 
SPFs in the HSM were developed using historic crash data collected over a number of 
years at sites of the same facility type in various states. For example, Chapter 10 of Part 
C includes SPFs for rural two-lane two-way roads that were developed using state data 
from Minnesota, Washington, Michigan, and California. Chapter 11 includes SPFs for 
rural multilane highways using data from Texas, California, Minnesota, New York, and 
Washington. Chapter 12 includes SPFs for roadway segments in urban and suburban 
arterials developed using data from Minnesota, Michigan, and Washington. The SPFs 
for intersections in urban and suburban arterials were estimated using data from 
Minnesota, North Carolina, Florida, and Ontario, Toronto (3).  
 
For example, the following SPF is used in the HSM (page 11–17, Chapter 11) for 
predicting the total number of crashes on an undivided roadway segment on a rural 
multilane highway: 
 

 ln ln( )a b AADT L

spfN e
 

  (1) 

Where, 𝑁𝑠𝑝𝑓is the base predicted total number of crashes on an undivided segment of 

rural multilane highway per year, AADT is annual average daily traffic on roadway 
segment in vehicles per day, L is the segment length in miles, and a and b are 
regression coefficients. 
 
This specific SPF and those used for other facility types are used to predict the crash 
frequency for a “base” condition. CMFs are used to adjust the predictions for situations 
that differ from that base condition. Specifically, a CMF is a constant or equation that 
represents the change in estimated average crash frequency due to a change in one 
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specific condition (when all other conditions and site characteristics remain constant) 
[4]. CMFs vary by treatments as well as facility types. The CMFs of treatments such as 
changing lane width, adding lanes by narrowing existing lanes and shoulders, widening 
paved shoulder, modifying shoulder type, and providing raised median are proved in 
HSM based on multiple before–after studies. CMF can be presented as follows: 
 

A

B

N
CMF

N
  (2) 

Where, 𝑁𝐴 is the expected number of crashes at a facility after one or more safety 
measures are implemented, and 𝑁𝐵 is the expected number of crashes at the same 
facility without any safety treatments. CMF less than 1.0 indicates fewer crashes due to 
the safety measures being taken. In HSM, SPFs and CMFs are used jointly to predict 
the average crash frequencies for selected sites using the following equation: 
 

spred pf kN C N CMF    (3) 

Where, 𝑁𝑝𝑟𝑒𝑑 is the predicted average crash frequency, 𝑁𝑠𝑝𝑓 is the crash expectation 

under the base condition estimated by specific SPFs, 𝐶𝑀𝐹𝑘 is the CMF for the treatment 
k, and 𝐶 is the local calibration factor.  

Calibration of SPFs 
As mentioned earlier, the base SPFs presented in the HSM safety prediction 
methodologies were developed with data from specific highway agencies. SPFs in the 
HSM employ a local calibration factor, C, to “…account for the expected variations 
jurisdiction and time period for which the predictive models were developed and the 
jurisdiction and time period to which they are applied by HSM users” (2). The local 
calibration factor, C, can be expressed mathematically as follows: 
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Where, C is the local calibration factor for a certain facility type, 𝑁𝑜𝑏𝑣,𝑖 is the observed 

crash frequency for site i of a certain facility type during the study period, and 

𝑁𝑝𝑟𝑒𝑑−𝑢𝑛𝑎𝑑𝑗,𝑖 is the predicted crash frequency for site i of a certain facility type. This 

predicted value is unadjusted, since the Ci is not utilized in the SPF. S is the total 
number of sites for that facility type.  
 
A calibration factor, C, of 1.0 means the predicted number of crashes is the same as the 
observed crash frequency. In other words, no calibration for local conditions is required. 
A C of less than 1.0 indicates that the observed crashes for a certain facility type in a 
region are fewer than the base model crash frequencies. A C of over 1.0 suggests that 
crash frequencies for a facility in a study location are greater than those for the base 
model. The computed C values are meant to be used to adjust HSM base model results 
to local conditions (5). 
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The calibration method suggested by the HSM involves the 5-step process shown in 
Figure 1. 
 

 
 

Figure 1. Calibration process recommended by the HSM (2) 

The calibration procedure commences with Step 1, the decision by the agency as to 
which facility types need to be calibrated. Step 2 involves selecting a random sample of 
sites representing the given facility type until reaching a sample size adequate to 
achieve a desired accuracy level. In Step 3, data are collected and compiled for each 
specific site selected to compute unadjusted predicted crash frequency (i.e., C = 1.0). In 
Step 4, the unadjusted predicted crash frequency for each group of sites relevant to a 
given SPF is calculated applying the necessary and jurisdiction-specific CMFs to the 
HSM SPF base model. In Step 5, the sum of all unadjusted predicted crash frequencies 
for each group of sites is compared with the respective sum of crash frequencies 
observed at these sites for the same period, and the ratio between the observed and 
unadjusted predicted crash frequencies is the estimated calibration factor. It should be 
noted that the calibration process is repeated for each year for which crash and traffic 
volume data are available. 

Development of SPFs 
The process for developing SPFs is similar to that for calibrating them, with two 
important exceptions. The first is that developing state-specific SPFs requires more data 
to achieve statistically significant results. The second is that when developing SPFs, the 
analyst must be particularly carefully in selecting the functional structure and the 
explanatory variables included in the model.  
 
Poisson models (14, 15) and negative binomial (NB) models (16-18) have been widely used 
to develop SPFs. It is widely recognized that Poisson models outperform the standard 
regression models in handling the nonnegative, random, and discrete features of crash 
counts (19, 20). Despite the improved performance, however, the constraint of the mean 
being equal to the variance in Poisson models is often violated by over-dispersed crash 
data. Alternatively, NB models are used to accommodate this over-dispersion issue by 

1. Identify Facility Types in the HSM 

2. Select Sites Randomly for Each Facility 
Type 

3. Obtain Data for Each Facility Type 

4. Apply the Predictive Models to Predict 
Total Crash Frequency for Each Site 

5. Compute Calibration Factors 
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incorporating an independently distributed error term. The specification of the NB 
models is expressed as follows:  
 

, ~ ( , )obv i iN Negbin r  (5) 

  0

1

ln
P

i p pi

p

X  


   (6) 

Where, 𝑁𝑜𝑏𝑣,𝑖 denotes the crash frequency at the site i in a given time period, 𝜃𝑖 is the 

expectation of 𝑁𝑜𝑏𝑣,𝑖, 𝑋𝑝𝑖 are site-specific explanatory variables (e.g., AADT, road 

length, and lane width), 𝛽0 and 𝛽𝑝 are coefficients to be estimated, and r is the 

dispersion parameter of the NB models.  
 
However, with the assumption of independent observations, neither the Poisson models 
nor the NB models address any inherent correlation of crash data. To complement the 
Poisson models and NB models, random effect models have been proposed in previous 
studies to account for the potential heterogeneity across homogeneous groups (21-23). In 
addition, random parameter models that can be viewed as extensions of random effect 
models are developed to incorporate the variability of both the intercept and the variable 
coefficients across observations and thus provide more flexibility for handling the 
heterogeneity (24-28). More recently, hierarchical models have become the preferred 
method to accommodate a multilevel data structure (29-35). Hierarchical models can 
accommodate the heterogeneity among different groups and have the ability to 
incorporate variables at the specific levels where impacts of specific variables occur (36). 
In addition, spatial autocorrelation can be implemented in crash observations. To model 
spatially correlated observations, generalized estimating equations (GEEs) are often the 
most widely preferred method (37-40). However, GEEs have the limitation of setting the 
same correlation matrix for all intersection groups, and thus cannot reflect the 
discrepancies in correlations among different groups of intersections. Conditional 
autoregressive (CAR) models can provide more flexibility in specifying the magnitude of 
correlation, and have been recommended in many recent studies (41-44). The CAR 
models capture the spatial dependence using the spatial error specification (45).  

Data Requirements 

In each of the HSM’s safety prediction methodologies – whether calibration, 
development, or simply the application of SPFs, – the first step is to divide a roadway or 
project into homogenous roadway segments or intersections. Homogeneity means the 
geometric characteristics and the traffic flow along a segment do not vary over the study 
period. For example, there is a roadway segment that starts from mile point 0.1 mile and 
ends at mile point 0.2 mile. Within that 0.1-mile segment, all geometric characteristics, 
such as number of lanes, shoulder width, median type, and other variables should 
remain the same over the study period, or the researchers should redefine the 
segments to make them as homogeneous as possible (5). 
 
The most important variables regarding site characteristic and traffic flow used in HSM 
safety predictions are shown in Table 2. Table 2 also identifies, for both roadway 
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segments and intersections, the specific data elements needed to use each of the 
HSM’s safety prediction methodologies. 
 

Table 2: Data requirements for HSM safety predictions (6) 

Data Elements 

Data Requirements per Facility Type 

Rural Two-

Lane Two-way 

Roads 

Rural Multilane 

Highways 
Urban and Suburban Arterials 

R
2

U
 

R
2

3
S

T
 

R
2

4
S

T
 

R
2

4
S

G
 

R
4

U
 

R
4

D
 

R
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3
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T
 

R
M

4
S

T
 

R
M

4
S

G
 

U
2

U
 

U
3

T
 

U
4

D
 

U
4

U
 

U
5

T
 

U
3

S
T

 

U
4

S
T

 

U
3

S
G

 

U
4

S
G

 

AADT of Major Road ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 

AADT of Minor Road   ★ ★ ★     ★ ★ ★           ★ ★ ★ ★ 

Segment Length ★       ★ ★       ★ ★ ★ ★ ★         

Lane Width ★       ★ ★                         

Shoulder Width ★       ★ ★                         

Shoulder Type ★       ★                           

Horizontal Curve Data ★                                   

Vertical Grades ☆                                   

Driveway Density ☆                 ★ ★ ★ ★ ★         

Centerline Rumble Strips ☆                                   

Passing Lanes ☆                                   

Four-Lane Section ☆                                   

TWLTLs ★                                   

Roadside Hazard Rating ☆                                   

Side Slope         ★                           

Roadside Fixed Object Density                   ☆ ☆ ☆ ☆ ☆         

Median Type and Width           ★       ★ ★ ★ ★ ★         

Lighting ☆ ★ ★ ★ ☆ ☆ ★ ★   ☆ ☆ ☆ ☆ ☆ ★ ★ ★ ★ 

Posted Speed Limit                   ★ ★ ★ ★ ★         

Automated Speed Enforcement ☆       ☆ ☆       ☆ ☆ ☆ ☆ ☆     ★ ★ 

Intersection Skew Angle   ☆ ☆       ☆ ☆                     

Left-Turn Signal Phasing                                 ★ ★ 

Intersection Left-Turn Lane   ★ ★ ★     ★ ★             ★ ★ ★ ★ 

Intersection Right-Turn Lane   ★ ★ ★     ★ ★             ★ ★ ★ ★ 

Right-Turn-on-Red Prohibited                                 ★ ★ 

On-Street Parking Type                   ★ ★ ★ ★ ★         

Maximum Lanes for Pedestrian Crossing                                 ☆ ☆ 

Pedestrian Volumes                                 ☆ ☆ 

Bus Stops within 1000 ft                                 ☆ ☆ 

Schools within 1000 ft                                 ☆ ☆ 

Alcohol Sales Establishments within 1,000 

ft 
                                ☆ ☆ 

Note: ★ required, ☆ desired 

 
However, as stated in the Maryland study (5) , states’ datasets are not currently built for 
the HSM. Many of the variables used in HSM, such as AADT on minor roads, driveway 
density, liquor store density, and others, are not commonly collected; thus, collecting 
required/desired data was the most difficult task in the Maryland study (5).  
The required crash data are: 

 Date (year)
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 Location (milepost, latitude and longitude readings) 
 Severity level (fatal/injury/property damage only) 
 Relationship to intersection (at-intersection/intersection-related/not-intersection-

related)  
 Type of crash 

 

The Choice Whether to Calibrate or Develop SPFs 

As stated earlier, because the SPFs provided in the HSM are developed using data 
from various states, it is more than likely that they cannot be transferred directly for use 
in a specific state. There are two possible strategies for making the SPFs better 
accommodate local data:  

 The first strategy is to calibrate SPFs provided in HSM so that the contents of 
HSM can be fully leveraged. States that calibrated SPFs provided in the HSM 
include Florida (13), Maryland (5), Oregon (6), Missouri (8), and Louisiana (9).  

 The second strategy is to develop location-specific SPFs regardless of the 
predictive modeling framework in the HSM. States that developed their own 
SPFs include Illinois (46) and Virginia (47).  
 

The pros and cons of these two strategies are summarized in Table 3.  
 

Table 3: Pros and cons of the two different SPF strategies 

 Calibrate SPFs Provided in HSM Develop Location-Specific SPFs 

Pros  Makes the best use of the 
predictive modeling framework 
in HSM 

 Requires less sample data  

 Provides more flexibility to 
accommodate local data 

 Provides crash estimates for facilities 
not included in HSM 

Cons  Provides less flexibility to 
accommodate the data in the 
new locations 

 Cannot provide crash estimates 
for facilities not included in HSM 

 Requires more sample data to achieve 
statistically robust results 

 Requires additional work for model 
development, evaluation, and 
comparison 

 
There are also states that adopt both strategies, such as Idaho (7), Alabama (10), Kansas 
(48), North Carolina (12) and Utah (49). 

Previous Work 

This section provides a detailed review of the existing studies conducted for various 
state DOTs. The jurisdiction-specific SPFs developed by these studies are shown in 
Appendix A. 
 
Trieu et al. (52) evaluated the HSM calibration criteria using two-lane two-way undivided 
urban arterial roadway (2U) segments and proposed a method to improve the accuracy 
and predictions of the calibration factors. A sensitivity analysis using different sized 
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calibration sets was performed by using Monte-Carlo simulation to re-sample sites. The 
researchers used roadway geometry, traffic volume, and crash data from six counties in 
northern New Jersey for a 3-year period, from 2009 to 2011. NJDOT’s Straight Line 
Diagram (SLD) database was used to assemble the required data for the 2U segments. 
The 2U segments were divided into 0.5-mile homogeneous sites. Google Earth and 
Google Street View tools were used to collect the remaining information required for 
calibration. A total of 372 sites were created. The expected number of crashes was 
calculated using the corresponding SPFs of the HSM. The number of sites drawn for 
each calibration set was based on varying percentages of the 372 sites. The authors 
used six different percentages from 10 percent to 60 percent in increments of 10 
percent. Monte-Carlo simulation was used to select random samples from the full 
dataset. Sites were selected with no regard to the criterion of a minimum of 100 crashes 
per year to be included in the analysis; later results indicated that most sites met this 
criterion. For each randomly selected sample the authors compared the percent error of 
the calibration factor with respect to the target calibration factor. In this case the target 
calibration factor was that calculated using all 372 sites. 
 
The target calibration factor was computed as 1.99 when all 372 sites were used. It was 
shown that at 50 percent of the full dataset all calibration factors were within 10 percent 
of the target calibration factor. In contrast, at 10 percent (i.e., a sample size of 37, which 
falls within the HSM site-count criterion of 30 to 50 sites), the probability of the 
calibration factor being within 10 percent of the target fell to 67 percent. The results 
indicate that the HSM’s criterion of 30 to 50 sites is insufficient for calculating a 
calibration factor, at least for two-lane undivided urban segments. The authors also 
examined how the average AADT distribution differed between calibration factors with 
small and large error terms.  
 

Green et al. (53) developed a methodology to create and maintain a full inventory of all 
intersection types in Kentucky using ArcMap. Using the developed database, the 
authors developed SPFs for various intersection types. The developed database 
contained precise location information as well as several safety and operational 
attributes for each point of an intersection. Once the database was created for all 
intersections, it was divided into 20 categories based on urbanization degree (rural or 
urban), the number of approaches, the type of traffic control, and whether the 
intersection was divided or undivided. Approximately one-third of the full dataset had 
sufficient attribute data. There was a total of 182,384 intersections. The authors 
performed negative binomial regression analysis using 5-year crash data from 2009 to 
2014. They estimated SPFs for all crash types and for fatal and serious injury crashes 
(KAB) separately. 
 
Storm and Richfield (54) developed calibration factors for the segments and intersections 
of two-lane two-way rural highways and rural expressways in Minnesota. Although the 
HSM provides SPFs for both divided and undivided segments of rural multilane 
highways, in Minnesota, rural expressways differ from those included in the HSM, 
where they are defined as typically high-speed multilane facilities with a depressed 
grass median, a limited number of at-grade intersections, and occasional interchanges 
at high-volume cross streets. MnDOT’s intersection and section toolkit data were 
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utilized to identify these segments and intersections of the two selected roadway 
facilities. Crash data for 3 years, from 2009 to 2011, were used in the analyses. From 
the database of two-lane two-way rural highway intersection sites, the authors used 100 
sites to calculate calibration factors, except 4-way signalized intersections, of which 
there were only 33 in total. Similarly, for the segments, they used a total of 115 sites to 
calculate calibration factors. From the database of rural multilane expressways, they 
used a number of sites varying from 31 to 93 for 4-way stop-controlled intersections and 
50 sites for segments. Data collection was performed manually using Google Earth 
aerial images. MnDOT Geographic Information Systems (GIS) shapefiles with traffic 
volumes were used to identify volumes for segments and intersections. For 
intersections, if an intersection was missing the AADT value for an approach, the 
authors assumed a fixed value for that approach based on the area population. Using 
the extracted data, separate calibration factors were calculated for two regions in 
Minnesota for each facility type. The authors also performed a cumulative residuals 
(CURE) analysis with respect to AADT and segment length to determine if the model 
bias for each facility type was within the acceptable range. A CURE plot shows the 
cumulative residuals of the data within the 95-percent confidence interval, or the upper 
and lower bound limits equal to plus or minus two standard deviations. If the plotted 
residuals are clustered around zero, it indicates that there is greater strength in the 
model in predicting the number of crashes for the given facility (55). The calculated 
calibration factors varied from 0.41 to 0.58 for two-lane two-way segments, and from 
0.45 to 1.22 for two-lane two-way intersections, for two different areas within Minnesota. 
Similarly, the calibration factors for rural expressway segments varied from 0.53 to 0.69, 
and those for the intersections varied from 0.39 to 2.32. 
 
Shankar and Madanat (56) developed SPFs for roadway segments, intersections, and 
ramps in California. They developed two separate SPFs, namely Type 1 and Type 2. 
Type 1 SPFs use only AADT as the explanatory variable, whereas Type 2 SPFs include 
both ADT and geometric variables.  
  

Type 1                               𝜆𝑖 = 𝐿𝑖 . 𝑒𝛼. 𝐴𝐷𝑇𝑖
𝛽

 (7) 

Type 2 𝜆𝑖 = 𝐿𝑖 . 𝑒𝛼. 𝐴𝐷𝑇𝑖
𝛽

𝑒∑ 𝛾𝑖𝑍𝑖𝑗
𝑛
𝑗=1  

 
(8) 

Where, 𝜆𝑖 is the expected number of crashes for facility type i; L is segment length; α, β, 
and γj are model parameters; and Zij is the area vector of geometric effects. The 
equations assume that length linearly affects the expected crash rate for a roadway 
segment. Also, the length variable is not present in the estimation equation for 
intersections, which are defined as fixed-length ranges of 0.05 miles from the centerline 
of the intersecting roadway. 
 

A total of 11 SPF classes were developed based on rural–urban distinctions and the 
number of lanes: (1) two-lane rural, (2) four-lane rural, (3) four-plus-rural, (4) multilane 
undivided rural, (5) multilane divided, (6) two-lane urban, (7) four-lane urban, (8) five-to-
seven lane urban, (9) eight or more lane urban, (10) multilane undivided urban, and (11) 
multilane divided urban. Functional classifications of roadways were based on ADT 
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counts. For example, an upper ADT bound of 35,000 was used to define rural interstate 
freeways. Comparatively, a lower ADT bound of 13,000 was used for urban state 
freeways and expressways. Also, a lower ADT bound of 3,000 was used for urban non-
freeways/non-expressways, including arterials. It should be noted that the roadway 
functional classification used in this study does not coincide with those used in the 
HSM. The homogenous segments used in this study had varying lengths; 60 percent 
had lengths less than or equal to 0.1 miles. In addition to segments, a total of 17,200 
intersection data were assembled. Intersections were extracted from the database using 
the mainline sections within 0.05 mile with respect to the centerline milepost. Mainline 
attributes such as shoulder widths, number of lanes, and roadside treatments (e.g., 
median barrier, guardrail) were integrated to form a comprehensive intersection 
geometric attribute dataset. Ten SPFs of Type 1 and Type 2 were developed for five 
severity types (i.e., fatality, severe injury, visible injury, complaint of pain, and property 
damage only) and total crash counts (rural multilane divided highways did not have 
enough sites for development). As a result, 120 SPFs were developed for roadway 
segments. It should be noted that there are more severity types included in this study 
than considered in the HSM. 
 
The integrated dataset used in this study consisted of 15,162 centerline miles and 
50,893.55 lane miles. A total of 40,541 roadway segments (excluding intersection 
ranges), with average lane length of 1.032 miles and segment length of 0.277 miles, 
constituted this network. 
 
Crash data for the period 2005 to 2010 were used to develop SPFs, and 2011 to 2012 
crash data were used for prediction testing. 
 
The main drawback of this study is the intersection SPFs, for which only the mainline 
estimated crash data is provided. In other words, the study did not use cross street 
crash data, since they were not available. Also, model transferability tests conducted on 
roadway segments indicated that unobserved effects remain in the models. Despite 
these unobserved effects, the predictive effectiveness of Type 2 SPFs compared to 
Type 1 SPFs was significant. 
 
Srinivasan et al. (13) estimated the calibration factors for the segments and intersections 
of all facilities included in the HSM for the years 2005 through 2008. The segment-level 
SPFs for total crashes in rural facilities were not calibrated, because property damage 
crashes are not fully recorded by the long-form crash reports in Florida’s crash analysis 
reporting system. Also, the equations for fatal and injury crashes were not calibrated for 
multilane undivided rural segments, due to lack of adequate data. As a result of this 
data-reporting issue, the calibration of segment-level SPFs for urban and suburban 
roadways was similarly only performed for fatal and injury crashes. The calibration 
factor was not calculated for each of five collision types individually, but for the sum of 
these five components. Similarly, at the intersection level, calibration factors were only 
computed for all collision types, rather than for each individual SPF. 
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The roadway characteristic data were collected through the Florida Roadway 
Characteristics Inventory (RCI) database maintained by FDOT. The majority of the 
required roadway characteristics data were obtained from the RCI database. For those 
that were not available through the RCI, such as grade, centerline rumble strips, 
roadside hazard rating, driveway density, and side slope, the recommended HSM 
default values were used. Sensitivity analyses for various ranges of these assumed 
default values were also conducted to assess the variation in the calculated calibration 
factors, and the results did not indicate any substantially different predicted crash rates. 
In this study, in identifying homogeneous segments, a minimum segment length was 
implemented for rural and urban segments, 0.10 and 0.04 miles respectively. This study 
also estimated the calibration factors with respect to geographic segmentation, namely 
seven Florida districts and four different population density levels. However, in the 
analyses, any segments that included intersections or curves were removed from the 
sample. This approach inevitably limits the applicability of the estimated calibration 
factors.   
 
In addition, this study also developed Florida-specific SPFs for the segments of rural 
two-lane two-way roadways and urban and suburban four-lane divided arterials. Using 
the 80 percent of the data already extracted, the authors developed SPFs for these 
facilities using negative binomial regression, and the remaining 20 percent of the data 
was used for testing. However, it was reported that there was no system-wide 
improvement in the accuracy of crash prediction. 
 

Kweon and Lim (47) developed SPFs for multilane highway and freeway segments using 
5 years (2004 to 2008) of data collected from 20,235 multilane highway segments and 
2,905 directional freeway segments in Virginia. Statewide SPFs were developed for 4 
subtypes of multilane highway segments and 10 subtypes of freeway segments. VDOT 
district-group SPFs were developed for 4 subtypes of multilane highway segments. The 
study used VDOT’s roadway management system called the Roadway Network System 
(RNS), which includes the roadway inventory, accident database, and traffic monitoring 
system. The data used for this study were extracted from this database for the years 
2004 to 2008. The functional form of the developed SPFs for the segments followed that 
used by the HSM. A negative binomial regression was conducted to estimate the model 
parameters. The predicted crash rate functions for multilane highway segments were for 
two directions, and those for freeway segments were for one direction. Separate SPFs 
were estimated for total crashes and for fatal and injury crashes. 
 
Garber and Rivera (57) developed SPFs for urban and rural intersections in Virginia. A 
total of 8,010 urban and 10,346 rural intersection data were extracted from the Highway 
Traffic Records Information System (HTRIS) and were later replaced by the RNS 
database. Crash data for the years 2003 to 2007 were used. The functional form of the 
intersection-level SPF is as follows: 

𝜆𝑖 = 𝑒𝛼 . 𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟,𝑖
𝛽1 𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟,𝑖

𝛽2  (9) 
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Where, 𝜆𝑖 is the expected number of crashes for intersection i, AADTmajor and AADTminor 
are the annual average daily traffic at the major and minor approaches of the 
intersection, respectively, and α, β1, and β2 are model parameters. Several test statistics 
were used to evaluate the developed SPFs, including the mean prediction bias (MPB), 
the mean absolute deviation (MAD), the mean square error (MSE), the mean squared 
prediction error (MSPE), the Pearson’s product moment correlation coefficients between 
observed and predicted crash frequencies, the dispersion parameters, and the Freeman 
Tukey RFT 

2 coefficients. Seventy percent of the data was used to fit the SPFs, and the 
remaining data were used for testing the transferability. 
  
Savolainen et al. (58) developed SPFs for four urban intersections in Michigan, namely 
three-leg (3ST) and four-leg (4ST) minor stop-controlled and signalized intersections 
(3SG, 4SG). In addition to the available traffic volume, roadway geometry, and crash 
database for the years 2008 to 2012, they performed extensive data collection to obtain 
missing information such as major and minor AADT, intersection skew angle, presence 
and type of left-turn phasing, presence of on-street parking and bus stops, etc. A 
threshold value of 0.04 miles from the intersection was used to identify crashes as 
intersection-related. The database created included 353 samples for 3ST intersections, 
350 for 4ST, 210 for 3SG, and 349 for 4SG. Because pedestrian and cyclist volumes 
were not available, the study developed models for pedestrian and bicycle crashes 
based on AADT for different severity types. The authors developed two types of SPFs: 
Type 1 was in the functional form suggested by the HSM, and Type 2 included detailed 
operational and geometric variables. Type 1 SPFs were developed for fatality/injury and 
property damage only crash severity types separately, with regional variables included 
in the model. The authors used state-specific percentages to calculate crash rates for 
different collision types. Type 2 SPFs for multi-vehicle and single-vehicle crashes and 
fatal/injury and property damage severity crashes were based on the following base 
conditions: no left-turn or right-turn lanes on the major road, zero skew angle, and no 
intersection lighting present. Similar to the Type 1 SPFs, these included regional 
indicators in the model. These SPFs were developed separately for intersections of only 
two-way streets and for intersections with at least one one-way intersecting street. 
CMFs were estimated for AADT, region, presence of median, presence of intersection 
lighting, number of lanes, posted speed limit, right-turn-on-red prohibition, and left- and 
right-turn lane presence.  
 
Robicheaux and Wolshon (9) calculated the calibration factors for rural two-lane two-
way, rural multilane divided and undivided, and urban and suburban two-lane, four-lane 
divided and undivided roadway segments in Louisiana. The roadway design and 
historical crash data for the years 2009 to 2011 were used in the analyses. The 
calibration factors for these segments varied between 0.62 and 2.54. This study did not 
include all possible geometric design and traffic control variables required by the HSM, 
due to the lack of these variables in the available state-maintained roadway database. 
However, the researchers extracted these data for randomly selected segments using 
Google Earth, and reported changes in the calibration factors of 20 to 60 percent. 
 



26 
 

Garber et al. (58) developed SPFs for rural and urban two-lane two-way roadway 
segments in Virginia. These SPFs were estimated for total crashes and combined fatal 
and injury crashes using a negative binomial distribution separately for three geographic 
regions in Virginia. The same functional form shown in equation (1) was followed. 
Roadway geometry, volume, and crash data for the years 2003 to 2007 were used in 
the model estimation, using sites where no geometric or operational changes were 
implemented within the time period. Similar to the study by Garber and Rivera (57), 70 
percent of the data was used to fit the SPFs, and the remaining data were used for 
testing the transferability. The authors examined the fit of each SPF, R2 and R2

FT values 
were calculated, and the transferability of the models was evaluated using the MSPE. 
 

Sipple (60) calculated the calibration factors for rural two-lane two-way roadway 
segments and 3ST and 4ST intersections in Idaho. In this study, state-specific SPFs 
were also developed for the same facilities. Most geometric and volume data were 
obtained from a state-maintained database. The necessary data that were not available 
in this database were collected using video logs. Crash data for the selected roadway 
segments and intersections were averaged from the 2003 to 2012 crash databases. 
The geometric data were from 2010, and the AADT values were from 2012. It was also 
assumed that geometric conditions were unchanged between these years. Identification 
of segments and intersections was performed using the intersection flag in the data, 
assuming that crash data were reported accurately. Roadside hazard rating (RHR) 
values were assumed as the base condition given in the HSM (i.e., RHR = 3). The 
sample size for the segments analysis was 447 sites, for which the average segment 
length was 0.507 miles. The sample sizes for 3ST and 4ST intersections were 79 and 
85, respectively. After all the required data were compiled, the segments were randomly 
divided for fitting the models and testing the predictive capabilities of those models, 
respectively. The 70 percent was randomly sampled 10 times from the full dataset to 
test the variability in each of the calculated parameters, i.e., the calibration factor and 
the regression coefficients. This was completed for only two-lane highway segments as 
a test. The results of examining several random samples showed the averages of each 
parameter converging toward the parameter values for the full dataset. Once calibration 
of the HSM SPFs and fitting of the developed state-specific SPF equations was 
complete, statistical analyses were performed to compare the reliability of the models 
based on how well they predicted crash frequency as compared to Idaho data. These 
statistical analyses included the Pearson’s R, MSPE, and the R2

FT values. Based on the 
results, it was found that the developed SPFs for 3ST and 4ST were not statistically 
significant. 
 
Williamson and Zhou (61) calculated the calibration factor for rural two-lane two-way 
roadway segments in Illinois using the crash data for the years 2007 to 2009. They also 
used a state-specific SPF developed by an earlier study and concluded that the 
calibrated HSM SPFs better fit the observed crash data. Collection or extraction of 
horizontal curvature data was not mentioned in the study. 
 
Sun et al. (62) evaluated the application of the HSM for rural two-lane two-way roadway 
segments using Louisiana data prior to the publication of the first edition of the HSM. 
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However, the recommended HSM calibration procedure was only partly followed, due to 
the lack of required geometric data. The study was able to create a database with ADT, 
lane width, and shoulder type and width, but RHR, driveway density, and horizontal and 
vertical curvature information were assumed as default values. The database used 
included 4,123 homogeneous sections with an average site length of 3.25 miles. The 
crash data from 1999 to 2001 were used, and an average calibration factor of 1.63 was 
calculated. The study then collected two additional variables, namely horizontal and 
vertical curvature and average driveway density. The researchers then examined the 
differences between the observed and estimated crash counts using six different 
analysis scenarios designed to calculate the impact of including these additional 
variables. It was shown that with the inclusion of these variables the difference between 
the observed and predicted crash counts was reduced from 5.8 percent to 3.3 percent. 
 
Banihashemi (63) evaluated the quality of the calibration factors generated from datasets 
of varying sizes by observing the changes in the calculated calibration factor using 
different percentages of the complete dataset. The study focused on rural two-lane two-
way, multilane, and urban and suburban arterial roadway segments. The roadway and 
crash data from 2006 to 2008 were used in the analyses. All the required data for 
calibration was readily available from various sources, except on-street parking, 
driveways, roadside objects, and side slopes. The study used default values for these 
missing variables. The methodology for conducting the sensitivity analysis was based 
on the assumption that the calibration factors calculated using different subsets of the 
overall dataset followed a normal distribution. Subsets’ percentages were chosen as 5, 
10, 15, 20, 30, and 50 percent of the overall dataset. The probabilities that the 
estimated calibration factor fell within 5 percent and 10 percent of the ideal calibration 
factors were calculated. These probabilities varied greatly for roadway segment types. 
 
Troyer et al. (55) presented the efforts undertaken by Ohio DOT to implement the HSM 
SPFs through data collection and calibration. It was stated that Ohio DOT had not 
collected all the data required for the HSM calibration procedure. The department had 
only recently started collecting additional data elements such as parking, driveways, 
and roadway curvature. The department elected to first calibrate the HSM SPFs and 
then decide whether to develop state-specific SPFs based on the evaluation of the 
calculated calibration factors. In order to evaluate the applicability of the calibration 
factors, the study generated CURE plots, which illustrate how well the model estimates 
the observed crashes and whether the explanatory variable fits the data for the entire 
dataset. The study included all 18 facilities included in the first edition of the HSM. Since 
most required data were not available, an extensive data extraction was performed to 
collect all required data elements using online maps, video logs, and GIS maps. The 
calibration factors, calculated as averages of multiple random samples, varied from 0.25 
to 3.71. The study concluded that the three-quarters of the HSM SPFs calibrated 
fulfilled Ohio DOT’s needs, and no state-specific SPF development was required for 
those facilities.  
 
Tegge et al. (64) developed state-specific SPFs for 17 segment types and 10 intersection 
types suggested by SafetyAnalyst, a software tool developed by the FHWA. The 
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authors used the negative binomial regression model to estimate the SPFs. They used 
5 years of crash data, from 2001 to 2005, but only 1 year of roadway data, due to 
limited availability. Therefore, the developed SPFs estimate the number of crashes for a 
5-year period. Separate SPFs were developed for fatal crashes, two types of injury 
crashes, and fatal and injury crashes. 
 
Persaud et al. (65) evaluated the transferability of HSM SPFs to urban signalized 
intersections in Toronto, Canada. The analyses dataset included AADT data for 137 
three-leg and 1,691 four-leg intersections, as well as crash data by collision type and 
severity, for a 6-year period, 1999-2004. The evaluation included only two collision 
types: all multi-vehicle collisions, and rear-end collisions for all severity types combined. 
Calibration factors for adjusting the HSM models to local conditions were first estimated 
and then applied to the HSM models to predict collisions for local sites in Toronto. 
These model predictions were then compared to those developed using local site data 
by using various goodness of fit and other performance measures, including the value 
of the recalibrated overdispersion parameter, MAD, and CURE plots. The analyses’ 
results indicated that the performance of the HSM SPFs was mixed. Applying the 
algorithm with base models estimated from local data produced marginally better 
predictions than applying the algorithm with HSM base models calibrated to local data.  
 
Persaud et al. (66) developed SPFs for 10 intersection types for urban roadways in 
Colorado. SPFs were developed separately for total crashes and fatal/injury crashes. 
The study used a sample of 543 intersections in total. Five years of crash data for the 
period 2000 to 2004 were collected for each of the 10 intersection types. CURE plots 
were used to evaluate the estimated models. The study suggests recalibrating the 
developed SPFs as new data become available. It also suggests recalibrating the 
overdispersion parameter, since it not only indicates how well the recalibrated SPF is 
fitting the data, but can also be used in the empirical Bayes methodology. 
 
Alluri et al. (67) identified and prioritized the influence of various variables on the 
calibration factor by ranking the variables using the random forest technique. The 
analyses were conducted using data for seven roadway segment types and three 
intersection types in Florida. The results showed that aside from AADT and length, 
driveway density and shoulder width were the most influential variables for rural two-
lane two-way roads. Similarly, shoulder width and median width were ranked most 
influential for rural multilane roadways. This study did not include curvature or vertical 
grade data, hence these variables were not ranked. For urban and suburban 4SG 
intersections, the number of approaches with right-turn lanes and the presence of bus 
stops were the most influential variables after AADT. Similarly, for 3ST intersections in 
rural and urban/suburban roadways, the third and fourth most influential variables were 
the number of approaches with left- and right-turn lanes, respectively. In a similar study, 
Findley et al. (68) reported that for rural two-lane two-way roadways, AADT, curve radius, 
and curve length were the most important variables in predicting curve crashes using 
the HSM model. 
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Mehta and Lou (10) calibrated the HSM SPFs for rural two-lane two-way and divided 
four-lane roadways in Alabama, and also developed state-specific SPFs in four different 
functional forms. The prediction capabilities of the two calibrated models and the four 
newly developed SPFs were evaluated using a validation dataset. Data included 
multiple traffic- and crash-related variables for the period 2006 to 2009. Homogeneous 
segments were created based on facility type, number of lanes, lane width, shoulder 
width, median width, speed limit, and AADT. Horizontal and vertical curvatures were not 
considered in generating homogeneous segments. The state-specific SPFs were 
developed to estimate the total number of crashes, and separate models for different 
severity and collision types were not considered. Five performance measures were 
used for model evaluation: MAD, MSPE, MPB, log-likelihood value, and the Akaike’s 
information criterion (AIC) (50). Two approaches were used to estimate the calibration 
factor. The first was the HSM-recommended method, while the second treated the 
calibration factor estimation as a special case of SPF development. The analyses’ 
results indicated that the calibrated HSM SPFs performed satisfactorily, but the state-
specific ones yielded superior predictions.  
 
Kim et al. (69) conducted the calibration of HSM SPFs and the development of state-
specific SPFs for urban and suburban arterial segments in Alabama. The study used 
the available roadway and crash dataset for the period 2007 to 2009. The available 
dataset included roadway segments of 0.01 miles containing variables including the 
number of lanes, AADT, functional class, total crash frequencies and crash type, 
presence of medians, median type, and presence of TWLTL. Homogeneous segments 
were generated by combining these 0.01-mile segments based on AADT, number of 
lanes, speed limit, median type and width, and presence of TWLTL. The average length 
of the generated homogenous segments was 0.14 mile, with minimum and maximum 
lengths of 0.01 miles and 2.14 miles, respectively. The dataset included 2,613 samples 
of 2U, 479 samples of 3T, 1,054 samples of 4U, 3,153 samples of 4D, and 1,598 
samples of 5T. The calibration factors were given 90 percent confidence levels, 
assuming that the calibration factor obtained from a limited number of samples follows a 
hypergeometric distribution, following the method proposed by Shin et al. (5). The study 
concluded that the HSM-recommended 30 to 50 samples were not enough to identify 
the calibration factor. For each facility, separate SPFs were developed for multi-vehicle 
and single-vehicle collisions. The performance of the models was evaluated using MAD, 
MPD, AIC, and Bayesian information criterion (BIC) measures. The analyses indicated 
mixed success for the developed SPFs. 
 
Shin et al. (5) calculated the calibration factors for all 18 facilities included in the HSM 
using data from 2008 to 2010 in Maryland. The study stresses the challenges in 
extracting the data required for the HSM calibration procedure. The data limitations 
included (a) the lack of precision measurement, reporting, and data collection tools, (b) 
inadequate coverage of traffic data, (c) incomplete data, (d) lack of roadway inventory data, 
and (e) data integration and interoperability. The most common data hurdles identified were 
the AADT on minor roadways, curvature information, and the signal phasing data. The 
study found that the calibration factors for 15 out of 18 facility types were less than 1.0. Of 
particular note, the calibration factors for intersections were extremely low. The study also 
pointed out the effect of crash reporting thresholds on the calibration factors, especially for 
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property damage type crashes. For example, in the case of Maryland, law enforcement 
officers are required to fill out a crash report only if there is an injury involved or if one of the 
involved vehicles needs to be towed. Therefore, the authors suggested that for Maryland, 

only the calibration factors for fatal and injury crashes should be utilized. 
 
A different study by Shin et al. (70) proposed an approach to determine a statistically 
reliable sample size for calculating local calibration factors using Maryland data from 
2008 to 2010. The proposed approach was based on the finite population correction 
(FPC) factor, which determined the minimum sample sizes by considering trade-offs 
among the desired error levels of the estimated calibration factors, confidence levels, 
and sample standard deviations. In many statistical analyses the underlying assumption 
is that the samples are taken from an infinite population and that they are selected with 
replacement. However, this is not always the case. These assumptions do not present 
much of a problem when the sample size, n, is small relative to the population size, N – 
for example when n is less than 5 percent to 10 percent of N. However, when n is 
larger, it is best to apply a correction to the formulas used to compute standard error. 
This correction, the FPC, is calculated as follows: 
 

 𝐹𝑃𝐶 = √
𝑁−𝑛

𝑁−1
  (10) 

The sample sizes obtained by using the proposed approach were compared with those 
suggested by the HSM, and the study concluded that the HSM-based sample sizes 
yielded inconsistent reliabilities, depending on facility types.  
 
Xie and Chen (71) first calculated the calibration factors for the SPFs of signalized 
intersections of urban and suburban arterials in the HSM using Massachusetts data 
from the period 2009 to 2012. The results indicated that the calibration factors for 3SG 
and 4SG intersections are substantially greater than 1.0, suggesting that the observed 
crashes at these two types of intersections are significantly higher than those predicted 
using the HSM SPFs. The study also developed new SPFs for urban and suburban 
intersections in Massachusetts for multiple- and single-vehicle, vehicle-bicycle, and 
vehicle-pedestrian crashes. In addition, because the HSM SPFs for vehicle-pedestrian 
collisions at signalized intersections require daily pedestrian volumes, in this study 
regression models were developed to estimate daily pedestrian volumes.  
 
Donnell et al. (72) developed state-specific SPFs for roadway segments and intersections 
of rural two-lane two-way roadways in Pennsylvania. The study used 8 years of crash 
data, from 2005 to 2012. Because the available roadway data was from 2008 to 2012, 
linear interpolation was performed to account for the AADT for the missing years, i.e., 
2005 to 2008. Various roadway data such as curvature, intersection skew angle, 
presence of passing zones, RHR, rumble strips, driveway density, and left- or right-turn 
lanes at intersections were extracted using Google Earth and PennDOT’s video 
photologs. A total of 21,340 unique roadway segments and 683 intersections were used 
to develop two separate SPFs, for total crashes and fatal/injury crashes. However, the 
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developed SPFs were not in the same form as those in the HSM, in which the study 
allows many of the variables included in the CMFs inside the model.  

 
Donnell et al. (73) extended their previous study and developed state-specific, 
regionalized SPFs for rural two-lane two-way, multilane, and urban and suburban 
arterial roadway segments and intersections in Pennsylvania. Separate SPFs were 
developed for total and fatal/injury type crashes for each facility type and for each of the 
12 districts in the state. The analyses’ results showed that, when an adequate sample of 
roadway segments or intersections was available for modeling, district-level SPFs, with 
county adjustment factors, outperformed other regional or statewide models based on 
their predictive power. The study used crash data from 2010 to 2014 and roadway 
geometric and operational data from 2013. AADT data were available for the years 
2009 and 2013, and thus the study used linear interpolation to estimate the AADT 
values for the interim years, and used linear extrapolation for the year 2014. Similar to 
the earlier study, the missing data were extracted using online mapping tools and 
PennDOT’s video logs. The performance of the developed models was tested based on 
the RMSE measure. 
 

Dixon et al. (6) calibrated the HSM SPFs for all roadway facility types in Oregon. The 
study extracted random samples for each facility type, with sample sizes for facilities 
ranging from 19 to 491. Crash data from 2004 to 2006 were used in the analyses. 
ODOT had horizontal curvature and vertical grade data available, so the researchers 
did not have to manually extract this information. However, it was determined that most 
minor-leg AADT values were missing, thus a multivariate linear regression model was 
used to estimate the minor AADT using independent variables such as land use, 
distance to the nearest freeway, presence of a centerline, etc. Other required data were 
extracted using ODOT video logs and online maps. For any data that could not be 
obtained or extracted, default values suggested by the HSM were used. Calibration 
factors varied from 0.15 to 1.43. The study also stresses the importance of the crash 
reporting differences between states, since Oregon is a self-reporting state. That is, 
when a person is involved in a crash that does not involve any injuries or require towing, 
the drivers involved are not legally required to report the crash. This results in 
underrepresentation of property damage crashes in the database. A similar argument 
was presented in Shin et al. (70). 
 
Saito et al. (49) calibrated the HSM SPFs for rural two-lane two-way roadway segments 
in Utah, and also developed four state-specific SPFs using the negative binomial 
technique and one state-specific SPF using the full Bayesian modeling technique. The 
authors used crash data from 2005 to 2007, using 157 sample segments. Regarding 
geometric details, the study did not use curved roadways and eliminated segments 
within 250 feet of a horizontal curve. Therefore, only tangent road segments were used 
in the analyses. Rather than using crash data for individual years, the authors 
calculated the calibration factor using the total number of crashes during the years 2005 
to 2007. The overall calibration factor for the studied roadway facility was found to be 
1.16. Evaluation of the developed SPFs was performed based on the BIC measure. The 
researchers reported that the calibrated HSM SPF performed well compared to the 
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developed models, yet argued that it did not provide a substantial benefit, because of 
the additional data required to implement it.   
 
Srinivasan and Carter (3) developed state-specific SPFs for 16 roadway segments and 9 
crash types using data from North Carolina. This study also calibrated the HSM SPFs 
for divided rural multilane road segments, all urban road segments, and 8 of 10 
intersections included in the HSM. Roadway operational and geometric details and 
historical crash data from 2007 to 2009 were used in the calibration analyses. The 
analyses’ results indicated that the calibration factors did not vary significantly from year 
to year; however, the calibration factors for urban two-lane roads with TWLTL and four 
lane divided and undivided roadway segments had significantly high calibration factors, 
in the range of 3.45 to 4.45. Roadway operational and geometric details and historical 
crash data from 2004 to 2008 were used in the model development. The roadway types 
selected for the model developed were chosen with the anticipation that they would be 
used within SafetyAnalyst. Therefore, some of the selected roadway types are not 
currently present in the HSM. In addition, the functional forms of the developed models 
were selected so that they were consistent with those used in SafetyAnalyst. It should 
be noted that the functional forms of SPFs in HSM and SafetyAnalyst differ from each 
other. The developed SPFs were evaluated using Freeman Tukey RFT 

2 and pseudo-R2 
coefficients. 
 
Sun et al. (8) calibrated the HSM SPFs of five segment types and eight intersection 
types for Missouri. Three years of geometric, operational, and crash data from 2009 to 
2011 were used in the analyses. The random sampling technique applied ensured 
geographic representativeness across the state. The extraction of the required data 
included examining video logs for roadside features, estimating horizontal curve 
parameters using CAD, reviewing Street View photographs to verify inventories and 
configuration, and measuring median widths using aerial photographs. The study also 
discussed certain challenges encountered during calibration, including data availability, 
finding a sufficient sample size for certain site types, maintaining a balance between 
segment homogeneity and minimum segment length, and excluding inconsistent crash 
data. The number of sites used in the analyses varied between 35 and 196, and the 
calibration factors calculated for 3 years varied between 0.28 and 1.98. 
 
Lubliner et al (48) calibrated the HSM SPFs of rural two-lane two-way roads in Kansas, 
and also developed state-specific SPFs. The data used for the calibration and 
development of SPFs were obtained from a KDOT-maintained database that included 
shoulder width, lane width, urbanization degree, and AADT for 2007. The required 
information that was not available in this database – such as horizontal curvature, 
vertical grades, and the information to determine the RHR – was extracted from as-built 
plans, and also from online maps. In addition, KDOT maps were utilized to gather traffic 
counts to estimate AADT for years other than 2007. The study used crash data for 
2005-2007. It was stated in the study that some of the most difficult data to collect were 
the AADT values for minor roads for intersections. Therefore, the study estimated these 
values using and ad hoc method called “travel shed.” A statewide calibration factor of 
1.48 was calculated for road segments. The calibration factors for three-leg and four-leg 
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stop-controlled intersections were calculated as 0.28 and 0.19, respectively. The level of 
crash prediction accuracy was not satisfactory for the KDOT; therefore, it was decided 
that the next step would be to develop state-specific SPFs. 
 
Dissanayake and Aziz (74) continued the work performed by Lubliner et al. (48), and 
calibrated the HSM SPFs of rural multilane divided and undivided road segments and 
stop-controlled intersections for Kansas. Geometric and operational data were obtained 
from the KDOT database for the period 2011-2013. A total of 281 divided and 83 
undivided rural multilane road segments and 199 four-leg and 65 three-leg intersections 
were used for calibration. The calibration factor for divided segments was calculated as 
1.436 and 0.524 for the total number of crashes and fatal/injury crashes, respectively. 
For undivided segments, these were calculated as 1.495 and 0.359. The calibration 
factors for four-leg stop-controlled intersections were 0.44 and 0.21 for total number of 
crashes and fatal/injury crashes, respectively. For three-leg stop-controlled intersections 
these were calculated as 0.92 and 0.47. Using the same dataset, the study developed 
state-specific SPFs for segments only in a form similar to that used in the HSM, for total 
crashes and fatal/injury crashes separately. The study also developed four distinct 
SPFs for total and fatal/injury crashes for segments using additional variables such as 
lane width, speed limit, shoulder width, etc. The evaluation of these models was 
performed using BIC and AIC measures. 

Interviews 

The team conducted in-person interviews with researchers who conducted similar 
research projects for the DOTs of Pennsylvania, South Carolina, Missouri, Kansas, 
Kentucky, and New York. The objective of these interviews was to learn the current 
state of practice and identify possible hardships in conducting similar analyses.  
 
The following is a list of important notes from these interviews:  
 
 Among the software tools used for SPF calibration are the Interactive Highway 

Safety Design Model (IHSDM), Smart Spreadsheets, and the Calibrator tool. It was 
unanimously agreed that the available databases do not include all of the data 
elements required by the HSM, and that manual data extraction was required. The 
research team was told that many graduate and undergraduate students participated 
to manually extract the required data elements. The most common tools used for the 
manual data extraction process were state-developed video referencing tools and 
Google Maps. 

 The team was told that crash locations as reported by police officers were often 
found to be erroneous when compared with detailed crash reports, especially at 
intersections.  

 While most studies relied on the urbanization code – i.e., rural or urban – included in 
the available dataset, the Missouri study determined the urbanization degree based 
on the population density database.  

 None of the researchers interviewed investigated the validity of the AADT data for 
segments or for the major and minor legs at intersections. Those interviewed 
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mentioned that they used the AADT shown in the database and did not further 
research the proximity of AADT stations to the intersections. 

 

Findings 

Since the publication of the first edition of the HSM, many states have attempted to 
estimate local calibration factors or to develop state-specific SPFs. As evidenced from 
the review of the previous work, although the calibration factor, as shown in equation 
(4), is a straightforward ratio between the estimated and observed crash frequencies, 
the major hurdle in calculating the calibration factor is the use of the SPFs provided by 
the HSM. In order to apply the corresponding CMFs, various geometric and traffic 
datasets are required. 
 
There are 60 variables used in the HSM predictive models, 41 of which are required and 
19 of which are desirable. Thus, data collection and extraction pose the most difficult 
challenge, whether the objective is calibration or development. As stated in Shin et al (5), 
states’ readily available datasets are not currently built for a seamless application of the 
HSM guidelines. The majority of the 60 variables are not commonly collected, such as 
driveway density, side slope, roadside hazard rating, liquor store density, pedestrian 
volumes at intersections, horizontal and vertical curvature, number of left- and right-turn 
lanes at intersections, etc. Collecting or extracting these data and also integrating data 
from various sources requires considerable time and man-hours.  
 
Based on the literature review, among the required datasets, the horizontal curvature 
data (i.e., curve radius and length for two-lane two-way rural roadways) stand out as the 
most problematic. With a few exceptions – i.e., Oregon DOT (6) and Ohio DOT (55) – 
state DOTs do not have a curvature dataset in a usable format that can be easily 
integrated into the process of finding homogeneous segments. The lack of this dataset 
has led researchers to assume default values for horizontal curvature CMFs or to omit 
sections with horizontal curvature (e.g., references 9,10,13,49, 67) or to manually extract this 
information using Google Earth (e.g., references 8, 60, 62, 72) or built-in plans (48).  
 
In addition, although state DOTs conduct comprehensive roadway traffic count 
programs, the available AADT datasets are often insufficient to meet the requirements 
of the HSM guidelines. As mentioned in the Introduction section, the AADT variable is 
utilized in all SPFs. The most common issue raised in previous studies is the lack of 
minor leg AADT at intersection facilities, especially in rural areas. In order to overcome 
this hurdle, some researchers have attempted to use statistical models to estimate 
AADT values at intersections where there are no available data (6, 48). Also, because 
AADT values are not typically updated every year at every intersection and roadway 
segment, many researchers use interpolated values for missing years, as suggested by 
the HSM.   
 
It has been noticed by the research team that none of the previous studies has alluded 
to the reliability of the available counts at intersections. As mentioned earlier, the base 
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SPFs for intersections include two AADT values, one for the major and one for the 
minor approach. Reliability of the AADT values can be assured when one has the 
turning movement counts collected at the target intersection. However, given the well-
known limitations in obtaining these counts, it would be very unusual to have AADT 
values obtained from sensors located immediately at each approach before an 
intersection. In reality, the AADT value for each approach is often estimated using the 
counts collected by a detector located at the upstream of the approach leg. One would 
expect that the reliability of the AADT value would diminish in proportion to the distance 
of a detector from the target intersection. This issue shall be investigated in the 
analyses carried out in this research project. 
 
Another issue that was raised in the previous studies is the fact that the urbanization 
classification of a roadway segment as defined by the HSM might not always match the 
urbanization code in a state’s database (9, 48). According to the HSM, “rural” refers to any 
segment outside an urban area, with a population of less than 5,000 people. However, 
the HSM leaves the final decision to the users, as there can be exceptions to the rule. 
For example, Lubliner et al. (48) found that some segments that can be classified as rural 
under the HSM were observed to have characteristics of an urban area, such as on-
street parking, sidewalks, and downtown-style developments. Therefore, the research 
team followed the urbanization classification of segments as coded in the SLD 
database. The SLD database is being used by various departments in NJDOT, and we 
have deemed it best to follow the same values in order to avoid confusion when 
applying either the calibrated or state-specific SPFs in safety analyses.   
 
The most frequently discussed issue in the research is the minimum segment length 
criterion set by the HSM. The HSM suggest that the homogenous roadway segments be 
no less than 0.10 miles. However, as evidenced in the previous studies, this criterion is 
hardly ever met, especially for urban roadway segments. For example, Shrinivasan et 
al. (13) used a minimum of 0.04 miles for urban roadway segments in Florida, and Dixon 
et al. (6) used a minimum of 0.07 miles for urban segments in Oregon. Similarly, Shin et 
al. (5) reported that over 60 percent of rural roadway segments and over 80 percent of 
urban roadway segments in their study were shorter than 0.1 miles. 
 
Some studies also discussed the impact of the crash reporting threshold on the scale of 
the calibration factors. Crash data from Washington and California were used in 
developing the HSM predictive models, and any deviation from the baseline crash 
reporting threshold would affect the estimation results for property damage crashes. For 
example, in Oregon crashes with over $1,500 of property damage are reported, while 
these values are $700 and $750 in Washington and California, respectively (6). Currently 
this threshold is $500 in NJ. According to Titze and Faron (75), approximately 65 percent 
of the states have a higher threshold than NJ, which is one of only 15 states with a 
threshold below $1,000, including Washington and California.  
 
As seen in the literature review, some studies solely focused on calibrating the SPFs 
presented in the HSM, and some attempted to develop state-specific SPFs for some or 
all of the facilities in the HSM. Those who only worked on calibration did not elaborate 
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on their findings or discuss the possible direction that the state agency would take 
based on the calibration results in terms of either applying these calibration factors or 
developing state-specific SPFs. The reported calibration factors in the previous studies 
varied considerably, from 0.15 in Dixon et al (6) to 4.45 in Srinivasan and Carter (3). In 
addition, most studies did not present a thorough analysis of the calibration factors in 
terms of their statistical significance, such as coefficient of variance, CURE plots, etc. 
 
Although the choice of whether to calibrate the HSM SPFs or develop state-specific 
SPFs is not discussed in detail in many of the previous studies, the main objective of 
these studies was presented as achieving the most accurate crash frequency 
predictions. As stated in Srinivasan and Carter (12), the future application of SPFs should 
be considered when making this decision. Although the HSM suggests developing 
state-specific SPFs if more accurate crash prediction results are sought, this strategy 
has not been supported by the findings of some studies. For example, after performing 
both the calibration process and SPF development for Florida, Srinivasan et al. (13) 
found that the crash prediction did not improve overall when state-specific SPFs were 
used. Saito et al (49) found that both approaches produced similar results in Utah. And 
finally, Mehta and Lou (10) found that while both approaches yielded reliable results for 
Alabama rural roadways, the calibration process was easier to apply. 
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AVAILABLE DATA SOURCES 

The available data sources are grouped into three categories by type: (1) Traffic 
Volume, (2) Roadway Features, and (3) Roadway Crashes. Information for each data 
source is summarized in Table 4.  
 

Table 4: General available data sources for New Jersey 

Data Type Data Sources Dates 

Traffic Volume Sensor Database 2009–2017 

Daily Turning Movement Counts (TMC) Database  2015–2018 

Weekly TMC Database 2017–2018 

Roadway 
Features  
 

Straight Line Diagrams (SLDs) 2017 

NJ Roads Centerlines GIS Geodatabase 2018 

Google Street View – 

Roadway 
Crashes 

Voyager Safety Crash Database 2011–2015 

Traffic Volume Data 

The New Jersey Traffic Monitoring Program of NJDOT maintains traffic detector stations 
that are used to collect continuous and short-term traffic count data on state roadways. 
This data collection process is conducted by the Bureau of Transportation Data and 
Safety (BTDS) in accordance with the FHWA Traffic Monitoring Guide (TMG) and the 
AASHTO Guidelines for Traffic Data Programs. The traffic counting program is 
designed to utilize, at a minimum, 48-hour short-term counts to produce estimates of 
AADT. The permanent or continuous site elements consist of approximately 95 Traffic 
Volume/Speed Stations (TVS), 90 permanent Weigh-in-Motion (WIM) System sites, and 
50 Major Stations of Volume and Classification, with data collected monthly on 7-days’ 
duration. The Short-Term Count Program includes about 5,500 Volume (48-hour) sites 
counted in a 3-year cycle, and about 4,000 ramps counted in a 6-year cycle. In addition, 
approximately 400 special counts are performed each year as needed. These special 
counts are normally requested by NJDOT engineers to support projects and/or 
investigations. These counts include volume, classification, or turning movement counts 
at select intersections. 
 
Traffic volume data were obtained from two databases provided by NJDOT: the NJDOT 
sensor database and the turning movement counts (TMC) database. The subsections 
that follow describe these two traffic volume databases. 
 

Sensor Database 
The sensor database provided by NJDOT consists of two separate tables: Stations and 
Counts. Figure 2 shows the key data elements available in each table. The sensor 
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volume dataset is generated by combining each table using the unique ID numbers of 
sensors. This process was performed by developing a C programming code that reads 
each table, relates each entry using the sensor ID number, and outputs the relevant 
information as listed in Figure 1.  
 
 
 
 
 
 
 
 
 

 

 
 

Figure 2: NJDOT sensor database and its key data elements 

The sensor volume dataset includes AADT values collected from 10,959 sensors from 
2009 to 2017. As noted earlier, the majority of these sensors are used for short-term 
traffic counting, the duration of which ranges from 2 to 3 days. These counts are then 
converted to AADT values. The short-term traffic count readings are repeated at each 
designated location every 3 years. Therefore, aside from continuous counting stations, 
the majority of the sensors have AADT values for specific years between 2009 and 
2017.  

TMC Database 
The TMC database provided by NJDOT includes hourly movement counts collected at 
various intersections. The TMC database is formed by combining data from two 
sources. The first set of TMC data was provided by Mobility and Systems Engineering 
department in MS Excel format. This dataset covers a total of five intersections: four 
intersections on NJ 18 and one intersection on US 130. Data were available for 1 week 
in April and 1 week in July 2018 at NJ 18 intersections, and for 1 week in October 2017 
at the US 130 intersection. The second set of TMC data was provided by the Bureau of 
Transportation Data and Safety. This data was provided in *.csv format, covers the 
years 2015 to 2018, and includes counts at 138 intersections collected over 12-hour 
periods. The following key data elements are included: date, start and end hours, 
Standard Route Identifier (SRI), milepost and functional class of primary and secondary 
approaches of the intersection, and hourly counts for each legal turning movement over 
a 12-hour period. 
 
The difficulty in using these datasets was twofold. The first issue was that each turning 
count was provided in a separate *csv file, and the second was that the counts were 
available in a detailed yet unusable format. A sample of this data is shown in Figure 3. 
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Figure 3: A sample of TMC count data provided in *.csv format 

In order to combine the TMC data files and make them more useful, the research team 
developed a C programming code that can read these data files and produce a 
summary of AADT for major and minor approaches. In addition, the code developed 
also locates each intersection’s latitude and longitude information using the 
pt_int_approach table of the SLD database, as explained in the following subsection. 

Roadway Features Data 

Roadway features data were extracted from three data sources: the SLD database, GIS 
maps, and Google Street View. 

Straight Line Diagrams Database 
 
NJDOT’s SLD database is the richest source of information on roadway features. This 
database was provided by NJDOT in MS Access format. It includes various tables on 
different geometric and operational aspects of NJ roadways. The key tables of interest 
for this study and the information within each table are presented in Table 5.  
 
Detailed information on how this dataset is used to locate intersection and 
homogeneous segments and information regarding data processing is presented later in 
this section. 
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Table 5: Description of key SLD tables 

Table Name Fields Notes 

ln_f_system ID SRI MP_S MP_E f_system_code      f_system_code 
1: interstate, 2: principal 
arterial/freeway/ 
expressway, 3: principal 
arterial, 4: minor arterial, 
5: major collector, 6: minor 
collector, 7: local 

ln_urban_code ID SRI MP_S MP_E is_urban (Y/N)       

ln_highway_type ID SRI MP_S MP_E type      type 
0: undivided, 1: divided, 2: 
dual-dual 

ln_median_type ID SRI MP_S MP_E type       type  
0: none, 1: grass, 
2: curbed, 3: positive, 
4: painted 

ln_median_width ID SRI MP_S MP_E width (ft)       

ln_shoulder_type ID SRI MP_S MP_E location X1 X2 Y1 Y2 Park  location 
1: right, 2: left, 3: middle, 
4: right middle, 5: left 
middle 
park 
metered, prohibited, 
unlimited 

ln_shou_width ID SRI MP_S MP_E width (ft)       

ln_pave_width ID SRI MP_S MP_E width (ft)       

ln_lane_count ID SRI MP_S MP_E no_of_lanes       

ln_speed ID SRI MP_S MP_E speed limit (mph)       

pt_intersection ID SRI MP SRI_X MP_X type Name of 
crossing 
approach 1 

Name of 
crossing 
approach 
2 

  type 
0: unsignalized, 
1: signalized, 
2: interchange, 3, 4: circle, 
5: median, 6,7,8: jug 
handles 

pt_int_approach ID SRI MP skew type X Y Signal 
(Y/N) 

  type 
3-way, 4-way, other 
 
 

pt_highway_lighting ID SRI MP location offset (ft) X Y    location 
1: right, 2: left, 3: middle, 
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NJ Roads Centerlines Geographic Information Systems Geodatabase 
 
The geodatabase of NJ roads centerlines GIS dataset was downloaded from the NJ 
Geographic Information Network website (76). The road centerlines geodatabase was 
built off of the existing NJDOT roadway network data by expanding coverage to include 
alleys and private roads, physical segmentation of geographic features at intersections, 
and jurisdictional boundaries and zip code boundaries, and by adding attribute values 
for alternate road names and linear referencing attributes (76). 
 
The centerlines geodatabase includes various tables, but the two most important are: 
 
1) Tran_road_NJ_Tran_road_centerline_NJ shapefile: This is the shapefile of the entire 
NJ roadway network. There are nearly 490,000 links in this shapefile, along with various 
link attributes, the most important of which are latitude and longitude readings of links’ 
start and end nodes, and the roadway SRI and roadway name.  
 
2) Tran_road_LRS_NJ table: This is a linear referencing system (LRS) table for all 
roadways in NJ that includes information such as roadway SRI, start milepost, end 
milepost, route type, etc. This table, however, does not include the latitude and 
longitude readings of links’ start and end nodes. 
 
These two tables can be merged using a common field name SEG_GUID in MS 
Access, as shown in  
Figure 4. After merging the two tables, the result was the NJ GIS Links database, which 
contains the SRI, name, start and end milepost, and latitude and longitude readings of 
each link’s start and end nodes. The dataset contains nearly 490,000 roadway links. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: NJ GIS Links database and its key data elements 
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Google Street View 
The Street View service of Google Maps was frequently used both to collect the 
roadway feature data missing in the available datasets and to verify the available data, 
especially for intersections, as discussed in the relevant subsections that follow. 

Voyager Safety Crash Data 

The crash data were provided by NJDOT for 2011 to 2015. There is much valuable 
information provided in this dataset. Table 6 lists the key data elements used as part of 
this study. 
 

Table 6: Key data elements of the Voyager Safety Crash database 

Data Element Notes 

Crash ID  

SRI  

Milepost  

Date  

Time  

Severity Fatality, Injury, Property Damage Only 

Severity code Complaint of Pain, Incapacitated, Killed, Moderate 
Injury, Property Damage Only 

Collision type  

Crash type Animal, Backing, Encroachment, Fixed Object, Left 
Turn/U-Turn, Non-fixed Object, Opposite Direction 
(Head-On), Opposite Direction (Sideswipe), 
Overturned, Pedalcyclist, Pedestrian, Rail Car-Vehicle, 
Right Angle, Same Direction (Head-On), Same 
Direction (Sideswipe), Struck Parked Vehicle, Other, 
Unknown  

Number of vehicles  

Number of fatalities  

Number of injuries  

Number of pedestrian fatalities  

Number of pedestrian injuries  

Latitude and Longitude  

 
It should be noted that the crash database only includes reportable crashes. A 
reportable crash is one that results in the injury or death of any person or damage to 
property of any one person in excess of $500. It should also be noted that the location 
of a crash, namely the SRI and milepost, are usually the most incomplete part of the 
crash database, making it difficult, if not impossible, to provide accurate location data. 

Table 7 shows the number of crashes per year, along with the percentage of crashes with 
complete SRI and milepost information. As the table shows, 40 to 50 percent of the crashes 
do not include this information.  
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In NJ, the police are equipped with GPS devices that can record the latitude and longitude 
of crashes. This information is supposed to be added to the crash report; however, the 
percentage of crashes for which this information is actually included in the raw crash data is 
very low. NJDOT post-processes the raw crash data and geocodes crashes with missing 
coordinates using SRI and milepost and cross street names. After this post-processing, 
data on nearly 95 percent of crashes from 2011 to 2015 include latitude and longitude 

readings, as shown in Table 7. 

 
Table 7: Crash data statistics 

Year Number of 
Crashes 

SRI & Milepost Latitude & 
Longitude 

2011 295,093 53.77 % 93.67 % 

2012 284,059 53.48 % 93.69 % 

2013 289,423 52.92 % 94.23 % 

2014 290,209 53.78 % 94.29 % 

2015 270,939 61.68 % 95.48 % 

 
The information gathered from the three data sources described in this section can be 
used to generate the data required for the calibration/development of SPFs for 
intersections and homogeneous segments per facility types included in the HSM. 
However, before generating these required datasets, the compiled data should be 
cleaned and corrected as described in the section that follows. 
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DATA PREPARATION AND CLEANING 

The objective of this section is to describe the cleaning process for data obtained from 
the three available datasets described in the previous section, and also to discuss 
several observed inconsistencies and instances of inaccurate information in these data 
sources. 

Traffic Volume Data 

AADT is a key variable in the HSM’s crash prediction model. The manual requires 
AADT at homogeneous segments and at major and minor road approaches of 
intersections for the calibration/development process. As mentioned above, the AADT 
data used in this study originates from two sources: the sensor database and the TMC 
database. Data cleaning was only required for the sensor database.  

Inconsistencies in the Sensor Database 
Four typical error types were identified in the sensor database, as depicted in Table 8. 
The first two types, namely the sensor type and direction, do not have any effect on the 
AADT values, while the last two types could lead to erroneous AADT values. Regarding 
Type 3 errors, there are 685 records that show multiple AADT values for a detector in 
the same year. Understanding well that these are not errors per se, the research team 
used the average AADT value for each year in the analyses. Type 4 errors were 
identified for 63 records; these records were removed from the analyses. 
 

Table 8: Examples of sensor database errors 

Error 
Types 

Description Example 

Type 1 
Same station 
with different 
station type  

 

 

Type 2 
Same station 
with different 
direction 
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Type 3 
Same year, 
multiple 
observations 

 

Type 4 

One direction 
AADT is missing 
and 0 value for 
total AADT 

 
 

Missing AADT Data 
As mentioned earlier, AADT data from sensors is not available for all years from 2009 to 
2017. As suggested by the HSM, an estimated AADT for each year of the evaluation 
period was interpolated or extrapolated as appropriate. The default rules suggested by 
the HSM for estimating AADT for the missing data are (2):  

 If two or more years of AADT data are available, the AADTs for intervening years 
are computed by interpolation. 

 The AADTs for years before the first year for which data are available are 
assumed to be equal to the AADT for that first year.  

 The AADTs for years after the last year for which data are available are assumed 
to be equal to that for the last year. 

Following the HSM’s guidelines, the research team conducted the AADT interpolation or 
extrapolation for missing years and prepared a complete AADT database. 

Roadway Features Data 

As mentioned earlier, the SLD database is a rich source of data on the operational and 
geometric characteristics of NJ’s roadways. However, the research team found several 
inconsistencies and errors. The following subsection provides a detailed description of 
the data cleaning process performed for the SLD diagrams. 

Preparing Intersection Database Using the SLD Database 
 
Correct identification of intersection types and locations is crucial because intersections 
are used both in determining homogeneous roadway segments and in generating the 
list of intersections per facility type. Here, the term “intersection” takes on a different 
meaning depending on the task at hand. To be specific, when the task is to determine 
homogeneous roadway segments, any point along the roadway that would make it 
possible for vehicles to make a turn is labeled as an intersection. Roadways should be 
split at these points to determine homogeneous segments. Within this task, in addition 



 

46 
 

to the conventional definition of intersection, median left-turns/U-turns, circles, jug 
handles, and interchanges are also deemed as intersections. In contrast, when the task 
is to generate the list of intersections per facility type, the focus is to identify only the 
conventional 3-way and 4-way intersections, while dismissing any other types of 
intersections.  
 
There are two tables in the SLD database that include information regarding 
intersections, namely pt_intersection and pt_int_approach. A comparison of these two 
tables is provided in Table 9.  
 

Table 9: Comparison of pt_intersection and pt_int_approach tables 

pt_intersection pt_int_approach 

Advantages 
 
 Includes cross approach’s SRI, milepost, and 

name 
 Includes not only intersections but also 

interchanges, median turns, jug handles 
 Includes the cross approach entry with its 

name even if no SRI or milepost exists 

Disadvantages 
 
 Does not include latitude and longitude 
 Does not include skew angle 
 Does not specify number of approaches 

Advantages 
 
 Includes latitude and longitude 
 Includes skew angle  
 Specifies the type of intersection and number of 

approaches 

Disadvantages 
 
 Classifies interchanges and circles as 

intersections 
 Does not include cross approach if it does not 

have an SRI, thus type of intersection is not 
always correct 

 Does not include cross approach’s name 

 
It can be seen in Table 9 that neither table includes complete information on 
intersections. The pt_int_approach table has one entry for each approach in the 
database. The major advantage of this table is the fact that it includes the latitude and 
longitude and skew angle. It also includes the type of intersection, namely whether it is 
a 3-way, 4-way, or 5-or-more-way intersection. However, because intersection type is 
determined simply by the number of approaches and the table does not include any 
approach that does not have an SRI, intersection type is sometimes reported 
inaccurately. 
 
The major advantage of the pt_intersection table is that it includes each cross 
approach’s SRI, milepost, and name, and even when the approach does not have an 
SRI, the table includes the name of the approach. However, the table does not include 
latitude and longitude or intersection type. 
 
The common drawback of both tables is the fact that the type of 3-way intersection 
cannot be determined when the roadway is divided. That is, as shown in Figure 5, when 
a roadway is divided at a 3-way intersection, in cases in which turns to and from the 
major approach are restricted by the median, the intersection is labeled as one-
directional 3-way, while in cases in which turns are not restricted, the intersection is 
labeled as two-directional 3-way. 
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Figure 5: Two types of 3-way intersections 

Identifying 3-way intersections based on their type is important only when the task is to 
generate a list of intersections per facility type that are then used for 
calibration/development of SPFs for intersections. The reason is that, as mentioned in 
the next subsection, in the available Voyager Safety crash database, direction of 
roadway on which a crash occurs is rarely reported. Consequently, when crashes are 
assigned to 3-way intersections regardless of type, there is an inherent error in the 
calibration or development procedure. That is, suppose a crash occurs at the 
intersection along the southbound direction as shown by the “X” in Figure 5. Let us also 
suppose that the direction of the crash is not reported in the crash database. Then it 
would be correct to assign this crash to the intersection provided that the intersection 
type is a two-directional 3-way. However, if the type of intersection is one-directional 3-
way, then this assignment incorrectly assigns the crash to the intersection, even though 
this crash is not due to the intersection, which will bias the results of 
calibration/development. 
 
In order to correctly identify the type and location of intersections, the research team 
developed a C programming code that processed both tables and also makes use of 
the NJ GIS Links database. Type of intersection can be easily identified using this 
database, as shown in Figure 6. In the map shown in the left of the figure, there are two 
one-directional 3-way intersections. In the NJ GIS Links database, the type of such 
intersections can be easily identified, as shown in the right of the figure. 
 

 
 
 
 
 
 
 
 
 

Figure 6: Identifying intersection types using NJ GIS Links database 

One-directional 3-way 
intersection 

Two-directional 3-way 
intersection 

X X 
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The decision flowchart for identifying the location and type of intersection using the NJ 
GIS Links database along with the relevant SLD tables is shown in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 7: Decision flowchart for identifying location and type of intersections 
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This process can be briefly explained as follows. For each intersection in the 
pt_intersection table, the code first checks whether the same intersection is included in 
the pt_int_approach table by matching its SRI and milepost. When a match is found, the 
code then reads the latitude and longitude of the intersection from the pt_int_approach 
table, finds the corresponding node in the NJ GIS Links database, and determines the 
number of approaches connected to it. Otherwise, it uses the SRI and milepost of the 
intersection, and searches within the NJ GIS Links database to match the 
corresponding node. Using the cross approach’s name, the code verifies whether this is 
the correct node or not, reads its latitude and longitude, and determines the number of 
approaches connected to the node. If this number, i.e., noLegs, is equal to 3, the 
intersection is labeled as a 3-way intersection. In order to determine if it is one-
directional or two-directional, the code first checks whether or not the intersection is 
located at a divided roadway using the ln_median_type table. If the roadway is 
undivided, it is labeled as a two-directional intersection. Otherwise, the code checks 
whether there exists a link at the intersection that connects the opposing directional 
links of that roadway, making it possible for vehicles to make a left turn to and from the 
major approach. If such a link exists, the intersection is labeled as a two-directional 3-
way; otherwise it is labeled as a one-directional 3-way. 
 
It should be mentioned that due to the high number of iterations and matching within 
multiple large databases, the code takes nearly 10 hours to execute on a workstation 
with an i7 3.30 GHz processor. In the end, the code outputs a total of 296,384 
intersections, consisting of conventional 3-way, 4-way, and 5-or-more-way intersections, 
medians, jug handles, circles, and interchanges.  
 
280,685 of these intersections were matched in the pt_int_approach table. Filtering out 
interchanges and circles, 279,530 of these intersections include conventional 
intersections, jug handles, and median left/U-turns. Among these intersections, the 
number of 3-way, 4-way, and 5-or-more-way intersections that also appear in the 
pt_int_approach table is 275,366. A summary of these intersection types is shown in 
Table 10.  
 

Table 10: Summary of conventional intersections found in pt_int_approach table 

Intersection Type Signalized Unsignalized Total 

3-way  2,944 198,641 201,585 

4-way 8,785* 64,306* 73,091* 

5-or-more-way 570 823 1,393 

 
Table 11 presents a summary of 3-way intersections by type and signalization. As 
shown, there is a total of 1,168 signals that are one-directional 3-way intersections. As 
mentioned earlier, these intersections were removed from the list of intersections used 
for SPF calibration/development. 
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Table 11: Type of 3-way intersections found in the pt_int_approach table 

3-way Type Signalized Unsignalized Total 

One-directional 105 1,513 1,618 

Two-directional 2,839* 197,128* 199,967* 

 
Attention should be given to the number of signalized one-directional 3-way 
intersections, as highlighted in Table 11. Since this type of intersection is not 
conventional, the research team investigated the output in detail to detect any possible 
errors in the decision process illustrated in Figure 7. It was revealed that there are, in 
fact, examples of such intersections. For example, as shown in Figure 8, the signalized 
intersection on Route 22 at milepost 48.26 consists of two separate 3-way intersections 
with a concrete barrier prohibiting left turns. Since each of these two 3-way intersections 
serve one direction of the main roadway, they are removed from the intersection 
database.  
 
 
 
 
 
 
 
 
 

Figure 8: Example signalized one-directional 3-way intersection on Route 22 

Other examples similar to the intersections shown in Figure 8 are Route 20 at milepost 
1.32, Route 9 at milepost 107.4, and Route 30 at milepost 50.18. 
 
In addition, there are also cases where an intersection was labeled as signalized but in 
reality is unsignalized (e.g., Route 30 at milepost 57.94). 
 
Several of these intersections were labeled as signalized one-direction 3-way for two 
reasons. The first reason is that the NJ GIS Links database sometimes has missing 
links. For example, Figure 9 shows the intersection on Route 1 at milepost 40.16, where 
the minor leg does not have a corresponding link in the GIS database. The second 
reason is that there is occasional inaccurate information in the ln_highway_type and 
ln_median_type tables, where the roadway is reported as divided but in reality it is not. 
For example, Route 1 at milepost 59.64 is reported as divided, and because the 
algorithm searches for a link connecting the opposing directions of the primary 
approach, it cannot it labels it at one-directional; yet in reality Route 1 that specific 
milepost is undivided. 
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Figure 9: Example of a missing link in the NJ GIS Links database 

Because it would be very time-consuming to sift through these intersections and 
determine which ones are in fact one-directional 3-ways and which are not, the research 
team decided to remove them from the intersections database to be used in the 
calibration/development process. 
 
In addition to the intersections listed in the pt_int_approach table, there are a total of 
15,699 additional intersections in the pt_intersection database. The developed code 
finds the exact location, i.e., latitude and longitude, of these intersections using the SRI 
and milepost. Due to the inaccuracies in the milepost values reported in the NJ GIS 
Links file, as discussed later in this section, the code verifies the intersection by 
matching the name of the crossing approach. If the name of the crossing approach 
given in the pt_intersection table is matched with the name in the NJ GIS Links 
database, the code marks the intersection as “verified,” otherwise it is marked as 
“unknown.”. 
 
Table 12 shows the summary statistics for the additional 15,699 intersections found. 
The table also shows the number of intersections verified by type. Among the 15,699 
intersections found, 7,642 were verified. It should be mentioned that “unverified” does 
not connote that the intersection location and type are not accurate, but simply that its 
exact location could not be verified by the cross street name. However, since perusing 
the unverified database is not time efficient, the research team decided not to include 
these intersections in the calibration / verification process. The research team realized 
that the mileposts in the LRS might vary from 0.01 to 0.09 miles. Through our e-mail 
correspondence with the Bureau of Information Management and Technology on May 
14, 2019, it was found that the LRS is out of date and the department is in the process 
of updating it. Once the modified LRS database becomes available, these intersections 
can be located very accurately. 
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Table 12: Summary of additional conventional intersections 

Intersection Type Signalized Unsignalized Total 

3-way  594 8,906 9,500 

3-way verified 179 5,063 5,242 

4-way 394 2,781 3,175 

4-way verified 209* 1,684* 1,893* 

5-or-more-way 32 144 176 

5-or-more-way verified 20 104 124 

 
Table 13 presents a summary of the additional 3-way intersections by type and 
signalization. 
 

Table 13: Summary of additional 3-way intersections by type and signalization 

3-way Type Signalized Unsignalized Total 

One-directional 121 685 806 

One-directional Verified 22 177 199 

Two-directional 473 8,221 8,694 

Two-directional Verified 157* 4,886* 5,043* 

 
The reasons for the presence of signalized one-directional 3-way intersections were 
presented earlier; similar reasons apply to those in Table 13. 
 
In summary, using the developed code, the research team was able to identify the 
locations and types of intersections by combining the information gathered from the 
pt_int_approach and pt_intersection tables and the NJ GIS Links database. It should be 
noted that the full list of 296,384 intersections, consisting of conventional 3-way, 4-way, 
and 5-or-more-way intersections; medians; jug handles; circles; and interchanges are 
used in determining the homogeneous roadway segments. As to the list of intersections 
to be used in the calibration / development process, the HSM covers only 3-way and 4-
way intersections, therefore, those used in the final list are indicated by asterisks in 
Table 10, Table 11, Table 12, and Table 13. The final list to be used in the calibration / 
development process includes a total of 279,994 intersections, among which 74,984 are 
4-way intersections (8,994 signalized and 65,990 unsignalized) and 205,010 are 3-way 
intersections (2,994 signalized and 202,014 unsignalized). Note that, as discussed in 
the relevant sections that follow, the number of intersections used in the calibration / 
development process is much lower than these values, based on the facility types 
included in the HSM and the availability of traffic volume data.  

Inconsistencies and Missing Information in the SLD Database  
 
The subsections that follow describe examples of inconsistent and missing information 
in some of the SLD database tables. There could be other instances of such cases 
discovered if a thorough quality check was performed. It should be noted that such 
cases are expected in large and comprehensive databases such as the SLD, and that 
the objective of this subsection is to point out these cases for future reference for 
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NJDOT. It should also be noted that the research team used the SLD database for 2017 
in our analyses and that these cases might not appear in the later versions of the 
database. 

Parking  

As discussed in the urban and suburban facilities section, parking information is 
required for the calibration of SPFs for roadway segments. The SLD table named 
“ln_shoulder_type” does in fact include a field that indicates the type of parking as (i) 
metered, (ii) prohibited, or (iii) unlimited, as shown in Table 5. However, further 
investigation of this database revealed that the information provided is far from 
complete, and the majority of the roadways are not included. For example, there is no 
information given for Route 27 between mileposts 0.0 and 1.444, which corresponds to 
Princeton downtown, where there is metered parking. Also, in some cases the table 
reports unlimited parking, yet no parking is shown in Google Street View (e.g., Route 1 
between mileposts 37.608 and 37.714). 
 
Based on our calculations, about 12.2 percent of the state roadways are included in the 
ln_shoulder_type table. 

Center Two-Way Left-Turn Lanes 

Another task related to urban and suburban segments is to determine the roadway 
segments that include a center two-way left-turn lane. Investigation revealed that it is 
not possible to use the SLD database to determine whether the roadway segment 
includes a center two-way left-turn lane. For example, the segment on Route 41 
between mileposts 2.37 and 2.41 includes a center two-way left-turn lane, as shown in 
Figure 10. The SLD database, however, marks this section as two-lane with a median 
width of 12 ft. Another example is the segment on Central Avenue in Clark Township 
between mileposts 4.08 and 4.17. This segment has two lanes in each direction, with a 
center two-way left-turn lane; however, the SLD database shows four lanes total with no 
median.  
 

 
Figure 10: Center two-way left-turn lane on Route 41 in Deptford Township 

Pavement Width 

Pavement width information is available in the ln_pave_width table of the SLD 
database, as shown in Table 5. This value is the total width across all traveling lanes 
excluding the shoulder width. However, there are cases in which the pavement width 
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values do not match the actual measurements in Google Earth, especially when the 
roadway is divided. For example, on Route 27 at milepost 20.0, where the roadway is 
divided with painted median, the SLD database reports the pavement width as 48 ft in 
the northbound direction and 36 ft in the southbound direction, with shoulder widths of 0 
and a median width of 12 ft. There are two through lanes in each direction on this 
section. The total pavement width should therefore be 84 ft, but when measured on 
Google Earth, this value is around 55 ft. Another example is Route 41 between milepost 
2.37 and 2.41. This section has two through lanes and one center two-way left-turn 
lane. It is indicated as being undivided in the SLD’s ln_highway_type table. The 
pavement width for this segment is given as 24 ft, number of lanes as two, and median 
width as 0, yet Google Earth measurements show the pavement width as being 40 ft.   

Lane Count 

Lane count information is available in the ln_lane_count table of the SLD database. The 
research team identified several cases of inconsistencies between the actual number of 
lanes and the number reported in the SLD database. For example, for Jacksonville 
Road in Springfield Township in Burlington County (SRI 03000670), the database 
shows four lanes between mileposts 7.15 and 9.0; however, Google Street View shows 
that there are actually only two lanes. 

Highway Type 

As shown in Table 5, the ln_highway_type table shows whether a roadway is undivided, 
divided, or dual-dual. Most entries are given for the primary direction, but there are 
some entries for the secondary direction. For example, for Route 26, i.e., SRI 
00000026__, the table reports that between mileposts 0.0 and 0.22 the roadway is 
divided, and that it is undivided between mileposts 0.22 and 2.54. There is also 
information on Route 26 Southbound, i.e., SRI 00000026_S, for which the table reports 
that between mileposts 2.315 and 2.54 the roadway is undivided. Assuming that the 
milepost information for the southbound direction corresponds to parent milepost range 
0.0 to 0.225, this information is conflicting. Similar cases can be found for SRI 
00000027__ and 00000027_S. 
 
In addition, as mentioned in the previous subsection, there are some cases in which the 
roadway is reported as being divided when it is in fact undivided, or vice versa.  

Voyager Safety Crash Database 

The key data elements of the Voyager Safety crash database are presented in Table 6. 
As mentioned earlier, crash location is usually the most incomplete part of the database. 
There are crash entries that are missing SRI, milepost, or latitude and longitude 
readings. NJDOT post-processes the raw crash data and geocodes the latitude and 
longitude of crashes using any location-related information reported, such as cross 
street names, addresses, SRI, or milepost. As shown in Table 7, following this 
geocoding process, nearly 95 percent of crashes include latitude and longitude 
readings. 
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Knowing the latitude and longitude of crashes is of utmost importance for assigning 
crashes to intersections per facility type. To determine whether a crash is intersection-
related, one must determine if its location is within 250 ft. of the intersection, as per the 
HSM’s recommendations (2). The milepost information for crashes is deemed too coarse 
for such calculations. One milepost is 528 feet, and any inaccuracies in milepost 
information would lead to incorrect assignment of crashes to intersections. As 
mentioned in the preceding subsection, the latitude and longitude values of 
intersections are available in the final intersection database. Thus, one could easily 
calculate the distance between a crash and an intersection using its latitude and 
longitude readings. This calculation is presented in the next section. 
 
To assign crashes to homogeneous segments, however, SRI and milepost information 
is required, because determining which segment a crash should be assigned to is not 
straightforward when using the latitude and longitude readings, especially when 
segments of different roadways are located close together. Inspection of the available 
crash database revealed that even though latitude and longitude information is available 
for nearly 95 percent of crashes, there are many instances in which the SRI or milepost 
information is missing. Table 14 shows the statistics for missing information for the crash 
database between 2011 and 2015. 
 
The research team developed a code in C programming language to determine the 
missing SRI or milepost information using the available latitude and longitude data. This 
code uses the NJ GIS Links database, which includes the start and end latitude and 
longitude and start and end milepost of each roadway link in the state. The code follows 
the decision flowchart shown in Figure 11 to determine the missing SRI and milepost 
information. 
 

Table 14: Statistics on Voyager crash data missing SRI and milepost information  

Year Total Number of 
Crashes 

Number Missing SRI and/or  
Milepost Information 

2011 295,093 127,786 

2012 284,059 123,806 

2013 289,423 128,398 

2014 290,209 126,476 

2015 270,939 99,131 

 
It should be noted that the total size of crash data for 5 years is approximately 266 MB, 
with 605,000 crashes with missing information. The GIS Links database has 490,000 
links. Therefore, it takes nearly 18 hours for the code to identify all missing SRI and 
milepost information. However, this is a one-time process. At this point, crash data for 
2011 to 2015 has been processed, and nearly 99 percent of the missing information has 
been restored.  
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Figure 11: Decision flowchart for determining missing SRI and milepost information 
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PROCESSING DATA 

Generating The Intersection Database  

Figure 12 shows the procedure for generating the intersection database per facility type. 
As shown in Table 5, SLD tables pt_intersection and pt_int_approach include the 
location of each intersection, type of intersection (i.e., 3-way or 4-way), whether it is 
signalized or not, the major and minor roadway SRI and milepost, cross street names, 
skew angle, and latitude and longitude readings. Using the SRI and milepost of the 
major approach of the intersection, one can determine the urbanization degree of the 
intersection using the ln_urban_code table, determine its facility type (e.g., arterial or 
not) using the ln_f_system table, and determine the number of lanes using the 
ln_lane_count table.  
 
There are various intersection-related data required by the HSM per facility type, such 
as the number of left-turn and right-turn lanes, no turn on red, signal phase type (e.g., 
left-turn protected or not), and presence of lighting. Any information that was not 
provided in the SLD tables or was missing for a particular intersection was extracted 
using Google Street View images. This procedure is explained in detail within the 
relevant sections of this report dealing with intersections. 
  
Once the geometric and operational information for intersections per facility type is 
gathered, the traffic volume and crash data can be assigned to each intersection using 
the latitude and longitude readings.  
 
Crash data are assigned to intersections based on the distance between the 
intersection and the crash location using the Haversine distance formula, shown in 
equation (11). Based on the HSM’s definition, a crash is labelled as intersection-related 
if it occurs on an intersection approach within 250 ft. of the intersection.  
 
 

𝑑 = 2. 𝑟. 𝑎𝑟𝑐𝑠𝑖𝑛 (√𝑠𝑖𝑛2 (
𝑋1 − 𝑋2

2
) + cos 𝑋1 . cos 𝑋2 . 𝑠𝑖𝑛2 (

𝑌1 − 𝑌2

2
))  (11) 

 
Where, d is distance in kilometers, r is the radius of the sphere (6,371 km), and X1, Y1 
and X2, Y2 are the latitude and longitude readings of points 1 and 2. 
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Figure 12: Generating the intersection database for each facility type 

It is worth mentioning that traffic volume data are rarely available for each intersection, 
except when there is TMC data. Therefore, for each intersection, the closest available 
traffic volume data are determined for major and minor approaches by matching the SRI 
and milepost values of sensor stations and the intersection. 

Generating the Homogeneous Segments Database 

Determining roadway segments that have similar geometric and operational features 
was a more challenging process than that for intersections. A homogeneous segment 
starts at an intersection or at any point where one of various geometric and operational 
features of the roadway changes at either direction of the facility. Figure 13 shows the 
procedure for generating the homogeneous segments database per facility type. 
 
 
 
 

pt_intersection 
pt_int_approach 

 

ln_f_system 
ln_urban_code 
ln_lane_count 

 

Determine if intersection is 
located at: 
 Rural two-lane 
 Rural multilane 
 Urban or suburban 

 

Determine if intersection is: 
 3-way 
 4-way 
 Signalized 

 

Gather related geometric and operational 
features of intersections 

 

Determine missing 
information using 
Google Street View 

 

Assign crash and traffic volume data to 
intersection using latitude and longitude 

 

Crash Data 

 
Traffic Volume Data 

 

Final intersection database per facility type 

 



 

59 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Generating homogeneous segments database for each facility type 

As shown in Table 6, the SLD tables include the essential roadway feature data 
required to generate homogeneous segments per facility type. It should be mentioned 
that the procedure shown in Figure 13 is generic and varies per facility type, as per the 
HSM’s guidelines. A more focused procedure for each facility type is presented in the 
relevant sections of this report. 
 
The procedure first eliminates any roadway of interstate functional type and dual-dual 
roadways using the ln_f_system and ln_highway_type tables. Whether the roadway is 
rural or urban is determined using the ln_urban_code table. Then the roadways are split 
at intersections. Intersection locations are obtained from the pt_intersection and 
pt_int_approach tables. Next, the roadway segments are further divided where there is 
a change in lane count, median type, median width, shoulder width, or pavement width, 
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based on the data obtained from the ln_lane_count, ln_median_type, ln_median_width, 
ln_shou_width, and ln_pave_width tables, respectively. Later, these segments are 
labeled as divided or undivided based on the data available in the ln_median_type 
table. It should be mentioned that whether a roadway is divided or not is also specified 
in the ln_highway_type data, as shown in Table 6. However, the SLD labels a roadway 
as divided if the median type is painted, i.e., flush median. In contrast, the HSM 
considers painted medians as undivided facilities. Therefore, based on the data in 
ln_median_type, if the median is curbed, positive, or grass, the segment is labeled as 
divided, and if the median is unprotected or painted, it is labeled as undivided.  
 
There are various segment-related data required by the HSM per facility type, some of 
which are not available in the SLD tables. These data were extracted using Google 
Street View images. This procedure is explained in detail within the relevant sections of 
this report dealing with segments. 
 
Once the homogeneous segments are generated and the relevant geometric and 
operational information is gathered, the traffic volume and crash data can be assigned 
to each segment using the SRI and milepost information. In this case, the latitude and 
longitude information is not used, since it is not straightforward to automatically 
determine which roadway segment a crash should be assigned to.
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RURAL TWO-LANE TWO-WAY SEGMENTS 

The HSM’s crash frequency predictive model specifies SPFs for the following segment 
for a rural two-lane two-way road site: undivided rural two-lane two-way roadway 
segment (R2U). It defines an undivided roadway segment (2U) as a roadway consisting 
of two lanes with a continuous cross-section providing two directions of travel in which 
the lanes are not physically separated by either distance or a barrier. In addition, the 
definition includes a section with three lanes where the center lane is a TWLTL or a 
section with added lanes in one or both directions of travel to provide increased passing 
opportunities (for example, passing lanes, climbing lanes, and short four-lane sections).  
 
This section presents a detailed description of the data requirements, data processing, 
and extraction of additional required data, and of the results of SPF calibration and 
development. 

Data Requirements 

The data required for calibration of R2U segment predictive models as specified by the 
HSM are presented in Table 15. 
 

Table 15: Data requirements for R2U segments 

DATA ELEMENT REQUIRED DESIRABLE SOURCE 

Segment Length   Segmentation of SLD 

AADT   Sensor Database 

Horizontal Curve Length   GIS Centerline Data 

Horizontal Curve Radius    

Presence of Spiral Transition     

Superelevation Variance for Horizontal 
Curves 

   

Percent Grade    

Lane Width   SLD->ln_pave_width 

Shoulder Type   SLD->ln_shoulder_type 

Shoulder Width   SLD->ln_shou_width 

Lighting   Google Street View 

Driveway Density   SLD->pt_intersection  

Presence of Passing Lane   SLD->ln_passing_zone 

Presence of Short Four-Lane Section   SLD->ln_lane_count 

Presence of Center Two-Way Left Turn 
Lane 

   

Presence of Centerline Rumble Strip   SLD->rumble_strip 

Roadside Hazard Rating    

Use of Automated Speed Enforcement    
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As shown in Table 15, three data elements that are required by the HSM are not readily 
available in the roadway features dataset. These are horizontal curve length, horizontal 
curve radius, and presence of center two-way left-turn lane. The last is not deemed 
problematic, since the presence of center two-way left-turn lanes is rare in NJ. In 
addition, after the homogeneous segments were determined, the research team 
perused the dataset and did not detect any center two-lane left-turn lanes. Horizontal 
curve length and horizontal curve radius, however, are crucial not only in the 
segmentation process but also in calculating the corresponding CMFs. As mentioned in 
the Findings subsection of the Literature Review section, among the datasets required 
by the HSM, the horizontal curvature data stand out as the most problematic. With few 
exceptions, state DOTs do not have a curvature dataset in a usable format that can be 
easily integrated into the process of finding homogeneous segments. The lack of this 
dataset led the researchers to assume default values for horizontal curvature CMFs, 
omit sections with horizontal curvature, or manually extract these data. 
 The research team decided to extract the horizontal curvature data for R2 segments 
using the GIS centerline map of NJ roadways. This approach minimized the amount of 
manual effort needed and increased the accuracy of data extraction. It was found that 
horizontal data extraction using Google Earth, as was done in previous studies, is prone 
to errors, especially in detecting and measuring radii of compound curves. In order to 
extract this important dataset, the team used a novel clustering-based approach, as 
explained in detail below.  
 

Gathering and Processing the Roadway Feature Dataset  

The data required for R2U segments shown in Table 15 are available through the 
roadway features, traffic volume, and NJ GIS Links databases described in the 
Available Data Sources section, with the exception of horizontal curvature data and the 
presence of center two-way left-turn lane. As mentioned above, the detailed 
investigation of the final dataset revealed no center two-way left-turn lanes. The 
subsection that follows describes the identification of horizontal curves using 
approximated curvature values of data points from the GIS roadway centerline maps.  

Extracting Horizontal Curvature Data 
The proposed approach is centered on the idea that distinct road sections, either curved 
or straight (i.e., tangent), have the same curvature values, and that one could detect 
these distinct sections based on their curvature.  
 
Let us consider the graphical representation of a road by discrete points on a GIS map, 

as shown in part (a) of Figure 14. Suppose that the study route of length L is discretized 
by 𝑖 = 1 𝑡𝑜 𝑛 points, dividing the route into 𝑛 − 1 number of intervals of varying length 

∆𝑖, where ∑ ∆𝑖= 𝐿𝑛−1
𝑖=1 . The forward finite-difference approximation of the first order 

derivative at any point 𝑖 can be written as: 
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 𝑓′(𝑖) ≈
𝑌𝑖+1 − 𝑌𝑖

𝑋𝑖+1 − 𝑋𝑖
           

(12) 

 
 

Where, 𝑋 and 𝑌 are the latitude and longitude readings of points. Note that equation 

(12) is analogous to the tangent of the bearing angle 𝜃 between points 𝑖 and 𝑖 + 1, 
shown in the inset of part (a) of Figure 14. Similarly, the finite-difference approximation 

of the second order derivative at point 𝑖 can be written as: 
 

𝑓"(𝑖) ≈
𝑓′(𝑖) − 𝑓′(𝑖 − 1)

𝑋𝑖+1 − 𝑋𝑖
       

(13) 

 
Using the approximated first and second order derivatives, curvature of point i can be 
calculated as: 
 

 𝜅𝑖 ≈
 𝑓"(𝑖)

[1 + 𝑓′(𝑖)2]
3
2

 
(14) 

 
 

 
(a) Discretized representation of a hypothetical roadway 

 
(b) Curvature information  
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(c) Calculated curvature value of points along the hypothetical roadway shown in (b) 

 
Figure 14: Hypothetical roadway 

Although 𝜅𝑖 are approximations, one can assert that points within a distinct roadway 
section, curved or tangent, will have similar values. In order to depict this proposition, 
consider the hypothetical roadway drawn in Google Earth as shown in part (b) of Figure 
14. The roadway includes three tangent and three curved sections. Each section is 
discretized by points automatically in Google Earth. The number of points on each 
section is also shown in part (b) of Figure 14. The curved sections 2, 4, and 6 are parts 
of circles with radii 915 ft, 1,745 ft, and 252 ft, respectively.  
 

Curvature 𝜅 of each point is calculated using equation (14) by using the latitude and 
longitude readings extracted from Google Earth, and plotted in part (c) of Figure 14. As 
seen in the figure, the curvatures of points within distinct sections are clustered closely. 
This plot clearly demonstrates that the approximated curvature values of discrete data 
points can be used to detect horizontal curves. For example, as expected, the points 
within tangent sections 1, 3, and 5 have curvature values clustered around zero; 
whereas, the points within the curved sections have curvature values distinctly different 
from zero.  
 
Note that the calculated curvature values of individual points along a perfectly drawn 
circle vary, as shown in part (c) of Figure 14. This is due to the representation of a 
continuous line with discrete points in space. However, as mentioned earlier, one would 

expect that 𝜅 of points on the same curve would be close to each other.  
 
The objective of accurately determining the sections that have similar values is similar 
to that of the common clustering algorithm, which is based on minimum within-group 
distance criterion (78). 
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Once the distinct sections are identified by the clustering, the radius 𝑅 of each 
horizontal curve can then be calculated using the Chord Method (79), as follows: 
 
 

 𝑅 =
𝑀2 + (𝐿𝐶2 4⁄ )

2𝑀
 

(15) 

Where, 𝐿𝐶 is the length of the chord between PC and PT, and 𝑀 is the middle ordinate, 
i.e., the distance between the middle point of the chord and the centerline of the curve. 
The chord method eliminates the need for determining the deflection angle. Note that 
the start point of each cluster (i.e., distinct road section) is the PC, and the end point is 

the PT. Knowing these points, the variables required to estimate 𝑅 can be easily 
calculated. 
 
In order to apply this approach, the proposed method first processes the latitude and 
longitude readings of the vertices of roadway centerlines from the NJ GIS Links 
database, and calculates the finite-difference approximation of curvature at each data 
point, as shown in Equation (14). These curvature data are then analyzed using the 
modified global K-means clustering algorithm, developed in C programming language. 
The proposition of this method is that curvature of points within distinct sections, i.e., 
curved or tangent sections, are clustered closely, as shown in part (c) of Figure 14. 
Therefore, the approximated curvature data of discrete GIS data points can be used to 
identify horizontal curves. The details of this approach can be found in Bartin et al. (78), 
in which the validity of the clustering method is examined with respect to two other 
methods, namely the mobile access vehicle method and manual horizontal curvature 
extraction using satellite images. It was shown that the rate of correct identification of 
curves by the clustering method is 95 percent on average. The undetected curves were 
found to be slight and short horizontal curves, which are usually not well described by 
discrete data points, especially in low-resolution GIS maps.  

Automatic Identification of Segments 
Using the method for extraction of horizontal curvature data described above, the 
research team was able to assign horizontal curvature radius and length values to all 
roadway segments in the SLD database. 
  
Homogeneous segments were generated by following the process described in the 
Processing Data section. The flowchart for this process is shown in Figure 15. A generic 
flowchart for automatic identification of homogeneous segments is in Figure 13. R2 
segments are determined by filtering based on urbanization degree, median type, and 
lane count, and by splitting when there are intersections or horizontal curvature within 
segments.  
 
Once homogeneous segments are identified, using the traffic volume dataset, distance 
between each segment and the closest traffic sensor is calculated. Table 16 presents 
the summary statistics on R2 homogeneous segments. As shown, there were a total of 
13,886 homogenous R2 segments found. However, the HSM suggests using segments 
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of 0.1 mile or longer for calibration and development purposes. The team found 5,847 
R2 segments with lengths longer than 0.1 mile, 756 of which include an AADT station 
within the segment. 
 
The research team used the 756 segments for analysis, due to the quality of AADT 
information expected from the stations located within segments. 
 

 
 

Figure 15: Flowchart for automatic detection of R2U  
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Table 16: R2U segments statistics 

R2U 
Number of 
R2Us 

Average Distance 
between AADT 
Station and the R2U 

Average Number of 
Intersections between AADT 
Station and the R2U 

Total 13,886 1.03 0.78 

> 0.1 mile 5,847 0.97 1.42 

AADT station 
within 

756 0.13 0 

Calibration Results 

Chapter 10 of the HSM provides a crash prediction model for R2 segments. The base 
SPF includes the AADT and segment length (L) as covariates: 
 

𝑁𝑠𝑝𝑓 𝑅2𝑈 = AADT × 𝐿 × 365 × 10−6 × 𝑒(−0.312) 

 
(16) 

The reliable AADT range is given as [0 – 17,800 veh/day] by the HSM.  
 
The SPF shown in equation (16) calculates the predicted crash frequency for the base 
conditions. The base conditions for R2 segments are 12-ft lanes, 6-ft paved shoulder 
width with no horizontal curvature, and center two-way left-turn lane. If the attributes of 
an intersection are different from the base conditions, CMFs are applied. Detailed 
information on CMFs for R2 segments is presented in Chapter 10 of the HSM.  
 
Model calibration in the HSM is performed by applying a multiplicative factor to the 
given SPF so that the aggregate number of predicted crashes is equal to the aggregate 
number of observed crashes in a jurisdiction. A calibration factor allows the SPF to keep 
its original model form. As discussed in the appendix to Part C of the HSM, selected 
samples are used to find the calibration factor that will make the aggregate predicted 
crash frequency equal to the observed total in the jurisdiction. The HSM recommends 
using a minimum of 30 to 50 sites that are selected without regard to their crash 
frequencies (2).  
 
In order to calculate a calibration factor, the observed crash frequency and the predicted 
crash frequency for each intersection are required. The observed crash frequency was 
calculated for each segment as explained in the Processing Data section. The predicted 
crash frequency can be calculated using the SPF and the corresponding CMF values 
given in the HSM.   
 
CMFs for shoulder width, shoulder type, lane width, and curve radius and length were 
calculated and multiplied by the predicted crash frequency for the base conditions to 
calculate the predicted crash frequency. Then calibration factors were calculated using 
equation (2). 
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The Calibrator tool developed by the FHWA was used to calculate the calibration factor 
and measure its goodness of fit (77). The calibration factor for R2U segments was 
calculated as 1.55 with a standard error of 0.12 and a coefficient of variation of 0.08. 
According to the FHWA report, a reasonable upper threshold for the coefficient of 
variation of a calibration factor is 0.10 to 0.15. Thus, the calibration factor can be 
considered acceptable. 
 
Figure 16 presents the CURE plots with respect to AADT and segment length. The 
results show that the cumulative residuals with respect to AADT stray from the region 
defined by the lower and upper bounds, which suggests that using the SPF from the 
HSM with the calibration factor is not a desired fit to the data at hand. Therefore, 
development of an SPF is warranted for R2 segments. 
 

 
Figure 16: CURE plot of R2U segments with respect to AADT and segment 

length 

Development Results 

The SPF for R2 segments was developed using the available datasets, with 756 
homogeneous segments, based on the negative binomial model suggested by the 
HSM. The model estimation was performed in R statistical package. The developed 
function is shown in equation (17), and the statistical results are shown in Table 17.  
 

𝑁𝑠𝑝𝑓 𝑅2𝑈 = 𝑒−6.405AADT0.827𝐿0.8644 

 
(17) 

Table 17: Development results of SPF for R2 segments 

Variable Estimate  Std 
Error 

z-
value 

Pr( > |z|) 

Intercept -6.40549 0.30042 -21.32 < 2e-16*** 

Log(AADT) 0.82670 0.03550 23.59 < 2e-16*** 

Log(Length) 0.8644 0.05924 14.59 < 2e-16*** 

Overdispersion parameter, k  0.664 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
3,394 dof, AIC: 4740.9 
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The SPF for roadway segments on rural two-lane highways are applicable to the AADT 
range from zero to 27,000 vehicles per day. 
 
In order to compare the developed SPF with the calibrated SPF from the HSM, the 
research team analyzed the comparison of predicted versus observed crash 
frequencies. Figure 17 shows the accuracy performance of the developed SPF, where 
the red bars indicate the observed frequency of crashes and the black outlined bars 
indicate the crash frequency predicted by the NJ-specific SPF. The results suggest that 
the developed SPF yields crash frequency predictions very close to the observed crash 
frequencies. 
 

 
Figure 17: Observed vs. predicted crashes – NJ-specific SPF for R2 segments 

Figure 18 shows the accuracy performance of the calibrated HSM SPF. It can be 
observed that the calibrated SPF prediction is significantly different from the observed 
crash frequencies, especially at zero crashes.  

 
Figure 18: Observed vs. predicted crashes – calibrated SPF for R2 segments 
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Based on the results of the comparison, the use of the developed SPF for R2 segments 
is recommended for NJDOT.  
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RURAL TWO-LANE TWO-WAY INTERSECTIONS 

The HSM’s crash frequency predictive model specifies SPFs for three types of 
intersections for rural two-lane two-way rural roads (R2)(2) : 
        (1) Three-leg stop-controlled intersections (R23ST)  
        (2) Four-leg stop-controlled intersections (R24ST) 
        (3) Four-leg signalized intersections (R24SG) 
 
This section presents a detailed description of the data requirements, data processing, 
and extraction of additional required data, and the results of SPF calibration and 
development. 

Data Requirements 

The required data for calibration of R2 intersection SPFs as specified by the HSM are 
presented in Table 18. 
 

Table 18: Data requirements for R2 intersections  
 

DATA ELEMENT REQUIRED DESIRABLE SOURCE 

Number of Intersection Legs   Intersection Database 

Type of Traffic Control   Intersection Database 

AADT for Major Road   Sensor Database 

AADT for Minor Road   Sensor Database 

Intersection Skew Angle   Intersection Database 

Number of Approaches with Left Turn 
Lanes 

  Google Street View 

Number of Approaches with Right Turn 
Lanes 

  Google Street View 

Lighting   Google Street View 

 
As shown in Table 18, the required dataset includes AADT for both major and minor 
roads, lighting, and intersection left- and right-turn lanes; the desired dataset includes 
intersection skew angle only. The base conditions that apply to the SPFs in the HSM 
are zero skew angle, no intersection left-turn or right-turn lanes, and no lighting present.  

Gathering and Processing the Roadway Feature Dataset  

The roadway feature dataset was used to identify the type of intersection and extract 
the information necessary for calculating CMFs. However, as mentioned earlier, as with 
any large database, there were observed errors in the SLD database. The most 
common types of such errors regarding R2 intersections were: (1) some overpasses 
were identified as intersections and (2) data such as lighting information was sometimes 
missing. In addition, the SLD database does not include the number of left- and right-
turn lanes at an intersection, which are required variables for the calibration of R2 
intersection SPFs. Therefore, the roadway feature data was used primarily to identify 
the type of intersection. Consequently, the research team conducted a manual data 
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extraction process to verify the information in the SLD database and extract the missing 
variables using Google Earth. 

Automatic Identification of Intersection Types 
A flowchart of the process for automatic identification of R2 intersection types is 
provided in Figure 19. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

Figure 19: Flowchart for identifying the type of data-ready R2 intersections 

Four roadway features are needed to automatically identify the type of intersection (i.e., 
R23ST, R23SG, R24ST, and R24SG). These are: (1) number of intersection legs, (2) 
urban/rural attribute, (3) lane count, and (4) type of traffic control. These features are 
available in the available roadway features and intersection database, as shown in 
Table 19. It should be mentioned that this step is only preliminary and that a manual 
process is required to finalize the identification of intersection types, as described in the 
next subsection. 
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Urbanization for an SRI and milepost can be determined using the In_urban_code table. 
As shown in Table 5, this table provides the SRI and start and end milepost, and the 
urban/rural feature, between the starting and end points of each roadway link. The field 
“is_urban” = Y indicates an urban area, while “is_urban” = N indicates a rural area. 
 

Table 19: Data elements used to identify intersection attributes 

Data Element Level Current Data Source 

Urban Code Approach ln_urban_code 

Lane Count Approach ln_lane_count 

In_median_type 

Number of Intersection Legs Intersection pt_int_approach 

pt_intersection 

NJ GIS Links database 

Type of Traffic Control Intersection pt_int_approach 

pt_sign 

 
Lane count information is found in the table In_lane_count. Similar to the urban/rural 
attribute, this table also consists of SRI, starting and end mileposts, and the lane count 
of the road segment between the starting and ending points. The field “descr” indicates 
how many lanes the intersection has. However, the lane count recorded in 
In_lane_count depends on whether the road is divided. If the road is divided, the “descr” 
field only records the lane count of one direction, while if it is undivided, the “descr” field 
records the total lane count for both directions. Thus, to identify the total lane number of 
an approach, the table In_median_type is also needed. The structure of the median 
type dataset is also similar to the urban/rural attribute, and the start and end mileposts 
are used to mark the road segments with the same median type. 
 
Number of intersection legs and type of traffic control is available in the intersection 
database that was generated by the research team using the pt_intersection and 
pt_int_approach tables, as explained in the Data Preparation and Cleaning section. 

 
For each approach of the intersection, the nearest AADT station was found, as 
explained in the Processing Data section. Only the intersections for which AADT 
stations exist on both pairs of approaches were selected as final candidates. AADTmaj 
was defined as the pair of approaches with larger AADT, and AADTmin was defined as 
the pair of approaches with smaller AADT. When the nearest AADT station was found, 
the distance to the intersection and the number of intersections between the AADT 
station and the intersection were also calculated. 

Manual Data Extraction and Validation 
Google Earth was utilized to extract additional data and check the validity of the data 
obtained from RF2. The steps of manual data collection and validation are as follows: 
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(1) Import the results of automatic identification of intersection types into Google Earth, 
and label the intersection using “Int_Id” (see Figure 20).  

 
Figure 20: Importing and visualizing the R2 intersections 

 
(2) Select one of the intersections from the intersection list (see Figure 21). 

 
Figure 21: Selecting an intersection from the list 

(3) Go to the top view of the selected intersection (see Figure 22): 
a. Check whether it is an overpass 
b. Validate the number of lanes 
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c. Validate the number of legs 
d. Extract the number of left-turn lanes and number of right-turn lanes 
e. Confirm the major direction and minor direction 

 

 
Figure 22: Top view of the selected intersection 

(4)   Go to the Street View of the selected intersection (see Figure 23): 
a. Check whether there is a Street View 
b. Validate the signalized attribute 
c. Extract whether there is a light 
d. Extract whether it is minor stop-controlled 
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Figure 23: Street view of selected intersection 

Based on the validated data, decide the type of intersection and label the intersection 
with the new intersection type, if appropriate.  

Intersection Crash Frequency and Traffic Counts 
As mentioned in the Processing Data section, a threshold distance was selected to 
determine whether to assign a crash as intersection-related. As recommended in the 
HSM, 250 feet was set as the distance threshold: all crashes that occurred within 250 
feet of the identified intersections were counted. Because the coordinates of both 
crashes and intersections are in longitude and latitude, we used the Great Circle 
(WGS84 ellipsoid) distance, as shown in equation (11). In addition, for each intersection 
approach, the closest sensors were found using the latitude and longitude values for 
sensor stations and intersections. 

R2 Intersection Dataset 

Following the data processing and extraction process, a total of 523 R2 intersections 
were identified, as shown in Table 20. Note that in addition to the three intersection 
types in the HSM, Table 20 also includes rural three-leg signalized intersections, 
R23SG. These intersections are summarized by county in Table 21. 
 

Table 20: Sample size of preliminary selection and final selection 

Type R23ST R23SG R24ST R24SG 

Preliminary Sample Size 422 21 220 94 

Final Sample Size 314 15 149 45 
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Table 21: Sample size by county of preliminary selection and final selection 

County Preliminary Sample Size Final Sample Size 

Atlantic 66 40 
Bergen 0 0 
Burlington 73 61 
Camden 7 3 
Cape May 23 19 
Cumberland 114 83 
Essex 0 0 
Gloucester 25 17 
Hudson 0 0 
Hunterdon 71 45 
Mercer 12 9 
Middlesex 1 1 
Monmouth 25 14 
Morris 5 4 
Ocean 9 8 
Passaic 0 0 
Salem 112 77 
Somerset 10 6 
Sussex 101 74 
Union 0 0 
Warren 103 62 

 
The quality of AADT data for major and minor approach at an intersection depends on 
the distance between the AADT station and the target intersection, and on the number 
of other intersections between the AADT station and the target intersection. The 
average intersection number between major/minor AADT station and the target 
intersection, along with the average distance between major/minor AADT station and 
the target intersection, are summarized in Table 22. 
 

Table 22: Summary of intersection AADT data 

 Type 

Average 
Major 
AADT 

Average 
Minor 
AADT 

Average 
Number of 
Intersections 
between 
Major 
Station and 
Target 
Intersection 

Average 
Number of 
Intersections 
between 
Minor 
Station and 
Target 
Intersection 

Average 
Distance 
between 
Major 
Station and 
Target 
Intersection 
(miles) 

Average 
Distance 
between 
Minor 
Station and 
Target 
Intersection 
(miles) 

R23ST 4,703 1,109 1.17 1.30 0.75 1.22 

R23SG 13,720 5,414 0.86 1.27 0.48 0.63 

R24ST 4,453 958 1.00 1.13 0.68 1.09 

R24SG 10,969 3,594 1.68 1.27 0.60 0.61 
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Detailed Description of Sampling Results 
Three-Leg Stop-Controlled Intersections (R23ST): The final sample set contains 314 
R23ST intersections (see Figure 24). For those intersections, the average AADT on 
major roads is 4,703; the average AADT on minor roads is 1,109; the average 
intersection count between AADT station and target intersection on major roads is 1.17; 
the average intersection count between AADT station and target intersection on minor 
roads is 1.30; the average distance between AADT station and target intersection on 
major roads is 0.75 miles; and the average distance between AADT station and target 
intersection on minor roads is 1.22 miles. 

 

 

Figure 24: Spatial distribution of R23ST intersections 

Three-Leg Signalized Intersections (R23SG): The final sample set contains 15 R23SG 
intersections (see Figure 25). For those intersections, the average AADT on major road 
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is 13,720; the average AADT on minor road is 5,414; the average intersection count 
between AADT station and target intersection on major road is 0.86; the average 
intersection count between AADT station and target intersection on minor road is 1.27; 
the average distance between AADT station and target intersection on major road is 
0.48 miles; and the average distance between AADT station and target intersection on 
minor road is 0.63 miles.  

 
Figure 25: Spatial distribution of R23SG intersections  

Four-leg Stop-Controlled Intersections (R24ST): The final sample set contains 149 
R24ST intersections (see Figure 27). For those intersections, the average AADT on 
major road is 4,453; the average AADT on minor road is 958; the average intersection 
count between AADT station and target intersection on major road is 1.00; the average 
intersection count between AADT station and target intersection on minor road is 1.13; 



 

80 
 

the average distance between AADT station and target intersection on major road is 
0.68 miles; and the average distance between AADT station and target intersection on 
minor road is 1.09 miles. 

 
Figure 26: Spatial distribution of R24ST intersections 

Four-leg Signalized Intersections (R24SG): The final sample set contains 45 R24SG 
intersections (see Figure 27). For those intersections, the average AADT on major road 
is 10,969; the average AADT on minor road is 3,594; the average intersection count 
between AADT station and target intersection on major road is 1.68; the average 
intersection count between AADT station and target intersection on minor road is 1.27; 
the average distance between AADT station and target intersection on major road is 
0.60 miles; and the average distance between AADT station and target intersection on 
minor road is 0.61 miles. 
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Figure 27: Spatial distribution of R24SG intersections 

Calibration Results 

Chapter 10 of the HSM provides a crash prediction model for R2 intersections. The 
base SPFs for R23ST, R24ST, and R24SG include the AADTmaj and AADTmin variables. 
The HSM also specifies the reliable AADT range for an intersection and cautions that 
the application of SPFs to sites with AADTs substantially outside this range may not 
provide reliable results (see Table 23).  
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Table 23: SPFs of three types of R2 intersections in the HSM 

Type SPF Reliable AADT Range 

R23ST 

𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−9.86 + 0.79. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)

+ 0.49. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,19500] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,4300] 

R24ST 

𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−8.56 + 0.60. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)

+ 0.61. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,14700] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,3500] 

R24SG 

𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.13 + 0.60. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗)

+ 0.20. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,25200] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,12500] 

 
The SPFs shown in Table 23 calculate the predicted crash frequency for the base 
conditions. The base conditions for R2 intersections are zero skew angle, no right- or 
left-turn lanes, and no lighting. If the attributes of an intersection are different from the 
base conditions, CMFs are applied. For R2 intersections, four CMFs are used – 
intersection skew angle, intersection left-turn lanes, intersection right-turn lanes, and 
lighting. Detailed information on CMFs for R2 intersections is presented in Chapter 10 of 
the HSM.  
 
Model calibration in the HSM is performed by applying a multiplicative factor to the 
given SPF so that the aggregate number of predicted crashes is equal to the aggregate 
number of observed crashes in a jurisdiction. A calibration factor allows the SPF to keep 
its original model form. As discussed in the appendix to Part C of the HSM, selected 
samples are used to find the calibration factor that will make the aggregate predicted 
crash frequency equal to the observed total crashes in the jurisdiction. The HSM 
recommends using a minimum of 30 to 50 sites that are selected without regard to their 
crash frequencies (2).  
 
In order to calculate a calibration factor, the observed crash frequency and the predicted 
crash frequency for each intersection are required. The observed crash frequency was 
calculated for each intersection as explained in the Processing Data section. The 
predicted crash frequency can be calculated using the SPF and the corresponding CMF 
values given in the HSM.   
 
CMFs for intersection skew angle, number of approaches with left-turn lanes, number of 
approaches with right-turn lanes, and presence of lighting were calculated and 
multiplied by the predicted crash frequency for the base conditions to calculate the 
predicted crash frequency. Then calibration factors were calculated using equation (2). 
   
The results of calibration factors are shown in Table 24. The Calibrator tool developed 
by the FHWA was used to calculate the calibration factors and measure their goodness 
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of fit (77). According to the FHWA report, a reasonable upper threshold for the coefficient 
of variation of a calibration factor is 0.10 to 0.15. In this respect, the results shown in 
Table 24 are found to be acceptable. 
 

Table 24: Calibration factors of R2 intersections  

Distance 
Calibration 

Factor 
Standard Error 

Coefficient of 
Variation 

R23ST 0.88 ±0.08 0.09 

R24ST 0.88 ±0.11 0.13 

R24SG 0.85 ±0.16 0.18 

 
Another approach to assessing the validity of the calculated calibration factor is the 
CURE plot, which is simply the graph of the cumulative residuals (observed minus 
predicted crashes) against a variable of interest. The residuals between the estimated 
and observed values are assumed as independent random variables. CURE plots are 
based on a loose version of the central limit theorem. It is expected that the CURE plots 
should be within the expected limits of an unbiased random walk, i.e., plus/minus two 
standard deviations. The CURE plots of R23ST, R25ST, and R24SG intersection types 
with respect to major and minor AADTs are shown in Figure 28, Figure 29, and Figure 
30, respectively. 
 

  
Figure 28: CURE plot of R23ST with respect to AADTmaj and AADTmin 

 

 
 
 
 
 
 
 
 
 

Figure 29: CURE plot of R24ST with respect to AADTmaj and AADTmin 
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Figure 30: CURE plot of R24SG with respect to AADTmaj and AADTmin 

Development Results 

The SPFs for R2 intersections were developed using the available datasets, based on 
the negative binomial model suggested by the HSM. The model estimation was 
performed in R statistical package. The development results for R23ST, R23SG, 
R24ST, and R24SG are shown in Table 25, Table 26, Table 27, and Table 28, 
respectively. 
 

Table 25: Development results for R23ST 

Variable Estimate  Std Error z-value Pr( > |z|) 

Intercept -6.1386 0.34741 -17.613 < 2e-16 *** 

Log(AADTMAJ) 0.49775 0.04194 11.869 < 2e-16 *** 

Log(AADTMIN) 0.29571 0.03284 9.004 < 2e-16 *** 

Overdispersion Parameter, k 0.619 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
1,569 dof, AIC: 4006.5 

 

𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−6.139 + 0.498. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.296. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]        (18) 

 
 
This SPF is applicable to an AADTMAJ range from zero to 33,750 vehicles per day and 
AADTMIN range from zero to 13,550 vehicles per day. 
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Table 26: Development results for R23SG 

Variable Estimate  Std Error z-value Pr( > |z|) 

Intercept -12.1399 1.7339 -7.001 2.53e-12*** 

Log(AADTMAJ) 1.1840 0.1811 6.539 6.20e-11*** 

Log(AADTMIN) 0.2809 0.1339 2.098 0.0359 . 

Overdispersion Parameter, k 0.128 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
74 dof, AIC: 361.69 

 

𝑁𝑠𝑝𝑓 3𝑆𝐺 = 𝑒𝑥𝑝[−12.140 + 1.184. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.281. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]          (19)                                                                      

This SPF is applicable to an AADTMAJ range from zero to 27,000 vehicles per day and 
AADTMIN range from zero to 9,750 vehicles per day. Note that the HSM does not have 
an SPF for R3SG intersection type. 
 

Table 27: Development results for R24ST 

Variable Estimate  Std Error z-value Pr( > |z|) 

Intercept -3.71636 0.43042 -8.634 < 2e-16*** 

Log(AADTMAJ) 0.15934 0.04728 3.370 7.5e-04*** 

Log(AADTMIN) 0.42567 0.04962 8.579 < 2e-16*** 

Overdispersion Parameter, k 0.71 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
744 dof, AIC: 2415 

 

𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−3.716 + 0.159. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.426. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]     (20) 

This SPF is applicable to an AADTMAJ range from zero to 24,500 vehicles per day and 
AADTMIN range from zero to 5,300 vehicles per day. 
 

Table 28: Development results for R24SG 

Variable Estimate  Std Error z-value Pr( > |z|) 

Intercept -5.81141 0.77483 -7.500 6.37e-14*** 

Log(AADTMAJ) 0.34479 0.06612 5.215 1.84e-7*** 

Log(AADTMIN) 0.52624 0.07042 7.473 7.85e-14*** 

Overdispersion Parameter, k 0.218 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:., 224 dof, AIC: 1106 
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𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.811 + 0.345. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.526. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]           (21) 

This SPF is applicable to an AADTMAJ range from zero to 31,250 vehicles per day and 
AADTMIN range from zero to 13,250 vehicles per day. 

 

Table 29 presents the R2 intersection SPFs developed for NJ and also the SPFs 
available in the HSM.  

 

Table 29: Summary of SPFs for R2 intersections  

 

Type Source SPF 

R23ST HSM 
𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−9.86 + 0.79 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.49 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]

× 𝐶𝑀𝐹𝑠𝑘𝑒𝑤 × 𝐶𝑀𝐹𝐿𝑇 × 𝐶𝑀𝐹𝑅𝑇 × 𝐶𝑀𝐹𝑙𝑖𝑔ℎ𝑡 

R23ST Development 𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−6.139 + 0.498. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.296. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]  

R24ST HSM 
𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−8.56 + 0.60 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.61 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]

× 𝐶𝑀𝐹𝑠𝑘𝑒𝑤 × 𝐶𝑀𝐹𝐿𝑇 × 𝐶𝑀𝐹𝑅𝑇 × 𝐶𝑀𝐹𝑙𝑖𝑔ℎ𝑡 

R24ST Development 𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−3.716 + 0.159. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.426. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

R24SG HSM 
𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.13 + 0.60 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.20 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]

× 𝐶𝑀𝐹𝐿𝑇 × 𝐶𝑀𝐹𝑅𝑇 × 𝐶𝑀𝐹𝑙𝑖𝑔ℎ𝑡 

R24SG Development 𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.811 + 0.345. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.526. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

R23SG HSM n/a 

R23SG Development 𝑁𝑠𝑝𝑓 3𝑆𝐺 = 𝑒𝑥𝑝[−12.140 + 1.184. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.281. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
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RURAL MULTILANE SEGMENTS 

The HSM’s crash frequency predictive model specifies SPFs for the following two 
segment types for rural multilane roadways:  
     (1) Rural four-lane undivided segment (R4U)  
     (2) Rural four-lane divided segment (R4D) 
 
The HSM defines the term “multilane” as a roadway facility with four or more through 
lanes. The rural multilane (RM) facilities may have occasional grade-separated 
interchanges, but these are not to be the primary forms of access and egress (2).  
 
In order to calculate the calibration factors for R4U and R4D segments for NJ-specific 
conditions, the required dataset was first gathered and processed. This section presents 
a detailed description of the data requirements, data processing, and the results of 
calibration and development. 

Data Requirements 

The required data for calibration of RM segment predictive models as specified by the 
HSM are presented in Table 30. 
 

Table 30: Data requirements for RM segments  

DATA ELEMENT REQUIRED DESIRABLE SOURCE 

Segment Length   Segmentation of SLD 

AADT   Sensor Database 

Lane Width   SLD->ln_pave_width 

Shoulder Width   SLD->ln_shou_width 

Lighting    

Use of Automated Speed Enforcement    

For Undivided Segments Only    

Sideslope    

For Divided Segments Only    

Median Width   SLD->ln_median_type 
SLD->ln_median_width 

 
As shown in Table 30, all required data except sideslope information was available in 
the compiled datasets. The research team used the default value of 1V:7H or flatter for 
sideslope, as assumed in the baseline conditions for undivided facilities in the HSM.  

Gathering and Processing the Roadway Feature Dataset  

Because the required data elements for RM segments were available in the compiled 
roadway feature dataset, there was no need for any manual extraction. However, the 
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research team manually verified the output of the automatic identification of RM 
segments using Google Maps Street View. 
 

Automatic Identification of Segments 
Homogeneous segments were generated by following the process described in the 
Processing Data section. The flowchart for this process is presented in Figure 31. A 
generic flowchart for automatic identification of homogeneous segments is shown in 
Figure 13. RM segments were determined by filtering based on urbanization degree, 
median type, median width, shoulder width, and lane count, and by splitting where an 
intersection exists.  
 
It should be mentioned that whether a roadway is divided or not is indicated in the 
ln_highway_type table, as shown in Table 5. The SLD classifies roadways with painted 
medians as divided facilities. However, the HSM identifies roadways with painted 
medians, i.e., flush medians, as undivided facilities. Therefore, using the median type 
information in the ln_median_type table, segments with painted medians are classified 
as undivided facilities in the automatic segment identification process. 
 
Once homogeneous segments were identified, using the traffic volume dataset, 
distance between each segment and the closest traffic sensor was calculated. Table 31 
presents the summary statistics on RM homogeneous segments. It can be seen that 
there is a total of only 45 homogenous R4D and 27 homogeneous R4U segments. 
However, the HSM suggests using segments of 0.1 mile or longer for calibration and 
development purposes. The team found 35 R4D segments of 0.1 mile or longer, 12 of 
which include a sensor station within the segment, and 19 R4U segments of 0.1 mile or 
longer, none of which include a sensor within the segment. 
 
Due to the limited number of RM segments, the research team used all the available 
homogeneous segments. 
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Figure 31: Automatic identification of RM segments 

 
 

Table 31: RM segments statistics 

R4D Number of R2Ds 
Average Distance between AADT Station 
and R4D 

Total 45 0.35 

< 0.1 mile 34 0.36 

AADT station within 12 0.17 

R4U Number of R2Us 
Average Distance between AADT Station 
and R4U 

Total 47 0.38 

< 0.1 mile 32 0.36 

AADT station within 0 n/a 

 
 
 
 



 

90 
 

Calibration Results 

Chapter 11 of the HSM provides a crash prediction model for RM segments. The base 
SPF includes the AADT and segment length (L) as covariates: 
 

𝑁𝑠𝑝𝑓 𝑅4𝑈 = AADT1.176 × 𝐿 × 365 × 10−6 × 𝑒(−9.653) 

 
(22) 

𝑁𝑠𝑝𝑓 𝑅4𝐷 = AADT1.049 × 𝐿 × 365 × 10−6 × 𝑒(−9.025) 

 
(23) 

The reliable AADT range is specified by the HSM as [0 – 33,200 veh/day] for R4U and 
[0 – 89,300 veh/day] for R4D segments.  
 
SPFs shown in equations (22) and (23) calculate the predicted crash frequency for the 
base conditions. The base conditions for R4U segments are 12-ft lanes, 6-ft paved 
shoulder width, no lighting, and 1V:7H or flatter sideslope; those for R4D segments are 
12-ft lanes, 8-ft shoulder width, 30-ft median, and no lighting. 
 
It is clear from the results shown in Table 31 that the sample size for RM segments is 
nearly sufficient enough for calibration, however, it is not enough for development of 
state-specific SPFs. This result is to be expected, since NJ is a densely populated state, 
and based on the SLD database, 86.8 percent of its roadway segments are in urban 
areas.   
 
The Calibrator tool developed by the FHWA was used to calculate the calibration factors 
and measure their goodness of fit. The calibration factor for R4U was calculated as 1.10 
with a standard error of 0.42 and coefficient of variation of 0.38. The calibration factor 
for R4D was calculated as 1.70 with a standard error of 0.80 and coefficient of variation 
of 0.47. As can be concluded from these values, the calibration factors do not yield the 
required statistical significance.  The CURE plots for R4U and R4D with respect to 
AADT and segment length are shown in Figure 32 and Figure 33, respectively. 
    

 
 
      (a) AADT         (b) Segment Length 
 

Figure 32: CURE plots for R4U with respect to AADT and segment length 
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     (a) AADT         (b) Segment Length 
  

Figure 33: CURE plots for R4D with respect to AADT and segment length 

It can be seen from the CURE plots that the cumulative residuals are within the 
allowable upper and lower bounds, which signifies that the calibrated SPFs for R4U and 
R4D segments are statistically acceptable based on the available dataset. However, the 
coefficients of variation of the calibration factors for R4U and R4D were found to be 0.73 
and 0.36. These values are well above the acceptable range of 0.10 to 0.15 as 
suggested by the FHWA (77). Because the available dataset is not large enough for 
development, the only alternative is the use of the calibration factors presented above, 
despite the subpar coefficient of variation values.  
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URBAN AND SUBURBAN SEGMENTS 

The HSM’s crash frequency predictive model specifies SPFs for the following types of 
urban and suburban segments: two-lane undivided (U2U), three-lane with center two-
way left-turn lane (U3T), four-lane undivided (U4U), four-lane divided (U4D), and five-
lane with center two-way left-turn lane (U5T), as shown in Figure 34. 
 

 
Figure 34: Urban and suburban segment types 

This section presents a detailed description of the data requirements, data processing, 
and extraction of additional required data, and the results of SPF calibration and 
development. 

Data Requirements 

The required data for calibration of urban and suburban arterial segment SPFs as 
specified by the HSM are presented in Table 32. 
 

Table 32: Data requirements for urban and suburban segments 

DATA ELEMENT REQUIRED DESIRABLE SOURCE 

Segment Length   Segmentation of SLD 

Number of Through Lanes   SLD-> lane_count 

Presence of Median   SLD-> ln_median_type 

Presence of Center Two-Way Left Lane    

AADT   Sensor Counts 

Number of Driveways by Land Use Type   Manual Extraction 

Posted Speed Limit   SLD-> ln_speed 

Presence of On-Street Parking   Manual Extraction 

Type of On-Street Parking   Manual Extraction 

Roadside Fixed Object Density     

Lighting   Google Street View 

Presence of Automated Speed 
Enforcement 
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As seen in Table 32, the number of driveways per land use type, presence of on-street 
parking, and type of on-street parking, which are required by the HSM, are not readily 
available in the compiled roadway feature dataset. Thus, a comprehensive manual 
extraction was conducted to obtain these data elements.  

Gathering and Processing the Roadway Feature Dataset  

The next two subsections describe the automatic identification of urban and suburban 
homogeneous segments using the compiled database and the manual data extraction 
process to obtain the missing required data elements using Google Maps Street View. 
 

Automatic Identification of Segment Types 
 
Homogeneous segments were generated by following the process described in the 
Processing Data section. The flowchart of this process for automatic identification of 
urban and suburban intersections is presented in Figure 35. However, identification of 
U3T and U5T is not possible using the SLD database, since the center two-way left-turn 
lanes are not indicated in the database. It was recommended that the research team 
use the lane usage information available on the NJDOT website instead, but this 
dataset is not sufficient either, and is also limited to state routes only. Therefore, the 
automatic identification process only identifies the U2U, U4U, and U4D segment types. 
 
It should be mentioned again that segments with painted medians are classified as 
undivided facilities, following the HSM guidelines.  
 
Once homogeneous segments were identified, using the traffic volume dataset, 
distance between each segment and the closest traffic sensor was calculated. Table 33 
presents the summary statistics on the number of homogeneous urban and suburban 
arterial segments. It can be seen that there are 275 U4U and 242 U4D segments where 
the AADT is of length more than 0.01 mile.  
 
The extracted data for each segment type is presented in Table 34. It should be 
mentioned that for U4U and U4D the team conducted data extraction for the segments 
shown in Table 33. These segments are longer than 0.1 mile, with a sensor present 
within the segment. In order to increase the sample size, the team also extracted data 
for segments that are longer than 0.1 mile where the sensor is not within the segment 
but is less than 0.15 miles in proximity. 
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Figure 35: Flowchart for automatically identifying urban and suburban segments 

 
Table 33: Urban and suburban segment statistics 

Site Type No. of 
Segments 

No. of Segments of 
Length > 0.1 Mile 

No. of Segments 
with AADT of 
Length > 0.1 Mile 

2-lane undivided (U2U) 36,008 11,610 1,708 

3-lane with TWLTL (U3T) N/A N/A N/A 

4-lane undivided (U4U) 6,062 1,675 275 

4-lane divided (U4D) 2,833 1,315 242 

5-lane with TWLTL (U5T) N/A N/A N/A 

 
 

Table 34: Data extracted for urban and suburban segments 

Site Type Data Size 

2-lane undivided (U2U) 459 

4-lane undivided (U4U) 514 

4-lane divided (U4D) 387 
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Manual Data Extraction and Validation 
 
As mentioned in the previous section, some of the required data elements were not 
available in the dataset, so manual extraction was conducted by the research team to 
obtain them. Google Maps was utilized to extract additional data and check the validity 
of the available data. The steps of manual data collection and validation are described 
in this section.  
 
The objective of this data processing effort is twofold: 
 
First is to verify the following attributes of urban and suburban segments obtained from 
SLDs: 

1. Number of lanes in the segment 
2. Type of segment (divided or undivided) 
3. Whether the segment is, in fact, urban 

Second is to extract the following attributes: 
1. Presence or absence of roadway lighting 
2. Total number of driveways in the roadway segment 
3. Number of driveways by type (see Section C, point 8) 
4. Total number of on-street parking spaces in the segment  

 
The HSM classifies driveways as major commercial, minor commercial, major 
industrial/institutional, minor industrial/institutional, major residential, minor residential, 
or other.  
 
The HSM classifies parking as parallel or angle parking, and requires the proportion of 
curb length within which parking is allowed to the total curb length of the segment. 
 
The detailed steps of this process are as follows: 
 
1. Open Google Maps and copy-paste the latitude and longitude of the start and end 
point of each segment. Use the Google Driving Route option from the start to the end 
point of segment. 
2. Using the Satellite View option of Google Maps for the current segment, check 
whether it is in fact an actual segment and record in the worksheet as follows: 
If it is not a segment, move to the next segment in the database. Otherwise leave this 
field blank and continue.   
3. Check the number of lanes and whether divided or undivided. If the actual number of 
lanes in the segment does not match the segment type2 of the current tab or an 
abnormal situation is observed, record "Y" and the actual number of lanes in the “Lane 
Error/Abnormality” field, stop and move to the next intersection. Otherwise leave this 
field blank and continue. 

                                            
2Note: U2U should have 2 lanes, and the segment should be undivided. U3T should have 3 lanes. 
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4. Using the Street View option of Google Maps for the current segment, if no Street 
View of the current segment is available, record "N" in "Street View" field, stop and 
move to the next intersection. Otherwise leave this field blank and continue. 
5. If the segment seems to be located in a rural area, record "Y" in field "Possibly 
Rural," then continue. Note that this is a subjective decision. Otherwise leave this field 
blank and continue. 
6. Extract driveway information (See Figure 36) 
7. Count and record the number of driveways along the segment from the start to the 
end point coordinates. 
8. While counting driveways, be mindful of other roads that might connect to the 
segment; they should be counted as driveways (See Figure 37) 
9. Note the type of driveway 
During the process of counting driveways, clearly mark what category each falls into. 
The HSM classifies driveways in the following manner:  
- Major commercial 
- Minor commercial 
- Major industrial/institutional 
- Minor industrial/institutional 
- Major residential 
- Minor residential 
- Other 
Any driveway that serves sites with 50 or more parking spaces is a major driveway. 
Otherwise note the driveway as “minor.” Driveways can be readily classified as minor or 
major from a quick review of aerial photographs that show parking areas or through 
user judgment based on the character of the establishment served by the driveway. 
Commerical driveways provide access to establishments that serve retail customers 
(See Figure 38). Industrial/Institutional driveways serve factories, warehouses, schools, 
hospitals, churches, offices, public facilities, and other places of employment. 
Commercial sites with no restriction on access along an entie property frontage are 
generally counted as two driveways. Residential driveways serve single and multi-family 
dwellings.  
10. Extract on-street parking information. Note and count the number of on-street 
parking spaces along the segment (See Figure 39). Also, note that the parking spots 
marked with an X should not be counted (See Figure 40) 
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Figure 36: Presence of a driveway (minor residential) in the segment 

 
 

 
Figure 37: Presence of a connecting road in the segment 
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Figure 38: Example of a minor commercial driveway 

 
 

 
Figure 39: Example of a parking space  
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Figure 40: Example of a parking spot marked X 

Calibration Results 

Chapter 12 of the HSM provides a crash prediction model for urban and suburban 
segments. Crash prediction for segments is conducted for 5 different crash types, 
namely multi-vehicle non-driveway collisions (Nbrmv), single-vehicle crashes (Nbrsv), 
multi-vehicle driveway-related collisions (Nbrdwy), vehicle-pedestrian collisions (Npedr), 
and vehicle-bicycle collisions (Nbiker). CMFs are applied only to the first three collision 
types. 
 
 

𝑁𝑠𝑝𝑓 𝑟𝑠 = 𝑁𝑏𝑟𝑚𝑣 + 𝑁𝑏𝑟𝑠𝑣 + 𝑁𝑏𝑟𝑑𝑤𝑦 

 
(24) 

𝑁𝑏𝑟 = 𝑁𝑠𝑝𝑓 𝑟𝑠. 𝐶𝑀𝐹1𝑟 . 𝐶𝑀𝐹2𝑟 . 𝐶𝑀𝐹3𝑟 . 𝐶𝑀𝐹4𝑟 . 𝐶𝑀𝐹5𝑟 

 
(25) 

 
 

Where, Nbr is the predicted average crash frequency of a segment (excluding vehicle-
pedestrian and vehicle-bicycle crashes), CMF1r is on-street parking, CMF2r is roadside 
fixed objects, CMF3r is median width, CMF4r is lighting, and CMF5r is auto speed 
enforcement.  
 
Note that Npedr and Nbiker are calculated as a proportion of Nbr, as follows: 
 

𝑁𝑝𝑒𝑑𝑟 = 𝑁𝑏𝑟 . 𝑓𝑝𝑒𝑑𝑟 

 
(26) 

𝑁𝑏𝑖𝑘𝑒𝑟 = 𝑁𝑏𝑟 . 𝑓𝑏𝑖𝑘𝑒𝑟 

 
(27) 
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Using the compiled dataset, the calibration factors for each facility were calculated, as 
shown in Table 35. 
 

Table 35: Calibration factors of urban and suburban segments 

Segment Type Calibration Factor 
Standard Error Coefficient of 

Variation 

U2U 1.264 ±0.14 0.11 

U4U 1.097 ±0.15 0.13 

U4D 1.596 ±0.21 0.13 

 
The coefficients of variation for U2U, U4U, and U4D are 0.11, 0.13, and 0.13, 
respectively. It is suggested in the literature3 that a reasonable upper threshold for the 
coefficient of variation is 0.10 to 0.15. The team also generated the CURE plots for each 
segment type, as shown in Figure 41. 
 

 
(a)                                              (b)                                             (c) 

Figure 41: CURE plots for (a) U2U, (b) U4U, and (c) U4U 

Development Results 

The research team performed the SPF development process for urban and suburban 
segments U2U, U4U, and U4D using the data extracted for each segment type. Data 

size for each segment type is shown in Table 34. 

The research team followed the SPF form used in the HSM that links the expected 
number of crashes to AADT and segment length, shown here: 
 

𝑁𝑠𝑝𝑓 = 𝑒𝑎+𝑏.ln(𝐴𝐴𝐷𝑇)+ln (𝐿) (28) 

  

                                            
3 Lyon, C., Persaud, B., and Gross, F. (2016). “The Calibrator: An SPF Calibration and Assessment Tool 
User Guide.” FHWA-SA-17-016. 
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Note that because the crash database does not indicate whether or not a crash was 
driveway-related, the developed SPFs could not be grouped into driveway-related and 
non-driveway-related multi-vehicle crashes as is done in the HSM. The SPFs are for 
total crashes, multi-vehicle crashes, and single-vehicle crashes. Also note that the SPFs 
for vehicle-pedestrian and vehicle-bicycle SPFs are not developed, but 𝑓𝑝𝑒𝑑𝑟  and 𝑓𝑏𝑖𝑘𝑒𝑟 

values are determined specifically for NJ. 
 
Table 36 shows the estimated coefficients of the developed SPFs for each segment 
type and crash type. The AADT range for U2U is [0 – 29,000 veh/day], for U4U is [0 – 
48,600 veh/day], and for U4D is [0 – 84,100 veh/day]. The detailed statistical results are 
shown in Table 37, Table 38, and Table 39. 
 

Table 36: Estimated coefficients of developed SPFs 

Segment  Crash Type SPF 

U2U 

Total 𝑁𝑇𝑂𝑇 𝑈2𝑈 = 𝑒𝑥𝑝[−9.798 + 1.188. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−14.411 + 1.641. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−3.977 + 0.435. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4U 
 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑈 = 𝑒𝑥𝑝[−12.01 + 1.432. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−13.794 + 1.59. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−6.961 + 0.751. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4D 

Total 𝑁𝑇𝑂𝑇 𝑈4𝐷 = 𝑒𝑥𝑝[−3.00 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−3.363 + 0.558. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−4.687 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

 
Table 37: SPF development results for U2U 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -9.79816 0.67509 -14.51 <2e-16 *** 

Log(AADT) 1.1888 0.07258 16.38 <2e-16 *** 

k 1.01 df: 1879 AIC: 4362.6 
 

Multi-Vehicle Intercept -14.4113 0.90904 -15.85 <2e-16 *** 

Log(AADT) 1.64054 0.09711 16.89 <2e-16 *** 

k 1.47 df: 1879 AIC: 3513.9 
 

Single-Vehicle Intercept -3.97695 0.80255 -4.955 7.22e-07*** 

Log(AADT) 0.43518 0.08718 4.992 5.99e-07*** 

 k 0.701 df: 1879 AIC: 2230.3 
 Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
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Table 38: SPF development results for U4U 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -12.0081 1.2848 -9.346 <2e-16 *** 

Log(AADT) 1.4318 0.1304 10.984 <2e-16 *** 

k 1.81 df: 1094 AIC: 3925.5 
 

Multi-Vehicle Intercept 13.7937 1.4572 -9.466 <2e-16 *** 

Log(AADT) 1.5912 0.1478 10.769 <2e-16 *** 

k 2.27 df: 1094 AIC: 3524.1 
 

Single-Vehicle Intercept -6.9611 1.5328 -4.541 5.59e-06 *** 

Log(AADT) 0.7514 0.1553 4.838 1.31e-06 *** 

 k 0.90 df: 1094 AIC: 1678.1 
 Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 

 
 

Table 39: SPF development results for U4D 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -3.0009 0.94179 -3.186 0.00144 ** 

Log(AADT) 0.54256 0.09147 5.931 3.01e-09 *** 

k 1.48 df: 899 AIC: 4285 
 

Multi-Vehicle Intercept -3.3629 1.0992 -3.060 0.00222 ** 

Log(AADT) 0.5581 0.1068 5.227 1.73e-07 *** 

k 2.07 df: 899 AIC: 3876.1 
 

Single-Vehicle Intercept -4.6871 1.1111 -4.218 2.46e-05 ** 

Log(AADT) 0.5429 0.1072 5.066 4.07e-07 *** 

 k 0.715 df: 899 AIC: 2005.4 
 Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 

 
The AADT ranges applicable to the SPFs developed for roadway segments on urban 
and suburban arterials are as follows: Zero to 33,000 vehicles per day for U2U, zero to 
48,750 vehicles per day for U4U and zero to 84,500 vehicles per day for U4D. 
 
Table 40 presents the vehicle-pedestrian collision adjustment factor 𝑓𝑝𝑒𝑑𝑟 and the 

vehicle-bicycle collision adjustment factor 𝑓𝑏𝑖𝑘𝑒, calculated using the 2011 to 2015 NJ 
crash database. 
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Table 40: Vehicle-pedestrian and vehicle-bicycle collision factors at urban and 
suburban segments 

Collision Type Segment Type Posted Speed  
≤ 30 mph 

Posted Speed  
> 30 mph 

Vehicle-
Pedestrian 

(𝒇𝒃𝒊𝒌𝒆) 

U2U 0.0208 0.0085 

U4U 0.0252 0.0109 

U4D 0.0128 0.0071 

Vehicle-Bicycle 
(𝒇𝒑𝒆𝒅𝒓) 

U2U 0.0068 0.0045 

U4U 0.0048 0.0029 

U4D 0.0029 0.0019 
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URBAN AND SUBURBAN INTERSECTIONS 

The HSM’s crash frequency predictive model specifies SPFs for four types of urban and 
suburban intersections: 
        (1) Three-leg intersections with stop control on the minor-road approach (U3ST)  
        (2) Three-leg signalized intersections (U3SG) 
        (3) Four-leg intersections with stop control on the minor-road approaches (U4ST) 
        (4) Four-leg signalized intersections (U4SG) 
 
This section presents a detailed description of the data requirements, data processing, 
and extraction of additional required data, and the results of SPF calibration and 
development. 

Data Requirements 

The required data for calibration of urban and suburban intersection SPFs as specified 
by the HSM are presented in Table 41. 
 

 
Table 41: Data requirements for R2 intersections 

DATA ELEMENT REQUIRED DESIRABLE SOURCE 

Number of Intersection Legs    Intersection Database 

Type of Traffic Control   Intersection Database 

AADT for Major Road   Sensor Database 

AADT for Minor Road   Sensor Database 

Number of Approaches with Left-Turn Lanes   Google StreetView 

Number of Approaches with Right-Turn 
Lanes 

  Google StreetView 

Lighting   Google StreetView 

For Signalized Intersections Only    

Type of Left Turn Phasing   Google StreetView 

Use of RTOR   Google StreetView 

Use of Red Light Cameras   N/A for New Jersey 

Pedestrian Volume   Default Values from HSM 

Max Number of Lanes Crossed by 
Pedestrians 

  Google StreetView 

Presence of Bus Stops within 1,000 feet   NJ Transit GIS Map  

Presence of Schools within 1,000 feet   OpenStreet Map 

Presence of Alcohol Sales Est. within 1,000 
feet 
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As seen in Table 41, the required dataset for all urban and suburban intersections 
includes AADT for both major and minor roads, lighting, and intersection left- and right-
turn lanes; for signalized intersections, left-turn signal phasing, and right-turn-on-red-
prohibited data are also required. The desired dataset includes maximum lanes for 
pedestrian crossing, pedestrian volumes, bus stops within 1,000 ft, schools within 1,000 
ft, and alcohol sales establishments within 1,000 ft. Note that among the data listed in 
Table 41, only the presence of alcohol sales establishments was not extracted. 
 
The base conditions that apply to the SPFs in the HSM are no intersection left-turn or 
right-turn lanes and no lighting present. 

Gathering and Processing the Roadway Feature Dataset  

The roadway feature dataset was used to identify the type of intersections and extract 
the information necessary for calculating CMFs. Some of the required data – namely the 
number of left- and right-turn lanes at each intersection, left-turn signal phasing, and 
right-turn-on-red-prohibited flag – are not included in any of the available databases. 
Therefore, the roadway feature data was used primarily to automatically identify the 
type of intersection. Consequently, the research team conducted a manual data 
extraction process to verify the information in the SLD database and extract the missing 
variables using Google Earth. 

Automatic Identification of Intersection Types 
The flowchart of the process for automatic identification of urban and suburban 
intersections is presented in 

Figure 42. 

Following the same generic process described in the Processing Data section, urban 
intersections were automatically identified using the information provided in the 
available dataset, namely urbanization, lane count, number of intersection legs, and 
type of traffic control. These features are included in the available roadway features and 
intersection database, as shown in Table 19. Then, the type of intersection were 
preliminarily identified as follows:  

 Intersections with urban (Urban Code), less than 6 lanes (Lane Count), three-leg 
(Number of Intersection Legs), and NA (Type of Traffic Control) were labeled as 
U3ST candidates. 

 Intersections with urban (Urban Code), less than 6 lanes (Lane Count), three-leg 
(Number of Intersection Legs), and Signalized (Type of Traffic Control) were 
labeled as U3SG candidates.  

 Intersections with urban (Urban Code), less than 6 lanes (Lane Count), four-leg 
(Number of Intersection Legs), and NA (Type of Traffic Control) were labeled as 
U4ST candidates. 

 Intersections with urban (Urban Code), less than 6 lanes (Lane Count), four-leg 
(Number of Intersection Legs), and Signalized (Type of Traffic Control) were 
labeled as U4SG candidates. 
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Note that this is only a preliminary step and that a manual process is required to finalize 
the identification of intersection types, as described in the next subsection.  

 

 
 

Figure 42: Flowchart of process for automatically identifying urban and suburban 
intersections 

Manual Data Extraction and Validation  
Google Maps was utilized to extract additional data and check the validity of the data 
obtained from RF2. The steps of manual data collection and validation are as follows: 
 
First is to verify the following attributes of urban intersections obtained from the roadway 
features and intersection database: 
 

1. Number of intersection legs (three-leg or four-leg) 
2. Type of traffic control (signalized or unsignalized)  
3. Misclassification of a bridge overpass as an intersection 
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4. Stop signs only on minor approaches (for unsignalized intersections only) 
 
Second is to extract the following attributes: 
 

1. Presence of lighting 
2. Total number of approaches with left-turn lanes 
3. Total number of approaches with right-turn lanes  
4. Presence of left-turn signal phase (for signalized intersections only) 
5. Type of left-turn signal phase (for signalized intersections only) 
6. Presence of right-turn-on-red (for signalized intersections only) 
7. Presence of red-light cameras (for signalized intersections only) 

 
The detailed steps are as follows: 
 
1. Copy and paste the latitude and longitude of each intersection in the Google Map 
search box.  
2. Using the Satellite View option of Google Maps for the current intersection, check 
whether it is in fact an actual intersection and record in the worksheet as follows: 
If it is an overpass, record “Y” in the "Overpass" field, stop and move to the next 
intersection in the database. Otherwise, leave this field blank and continue. 
3. Check the number of intersection legs. If the actual number of intersection legs does 
not match the intersection type4 of the current tab or an abnormal situation is observed, 
record "Y" and the actual number of legs in “Leg Error/Abnormality” field, stop and move 
to the next intersection. Otherwise leave this field blank and continue. 
4.  Using the Street View option of Google Maps for the current intersection, if no Street 
View of the current intersection is available, record "N" in "Street View" field, stop and 
move to the next intersection. Otherwise leave this field blank and continue. 
5. If the intersection seems to be located in a rural area, record "Y" in field "Possibly 
Rural," then continue. Note that this is a subjective decision. Otherwise leave this field 
blank and continue. For example: a rural-like intersection (39.55941638,  
-75.48753948) marked as urban in the straight line diagrams database (See Figure 43). 
6. If the number of lanes of any approach is six or more, record "Y" in "Lane Number 
Error" field, stop and move to the next intersection. Otherwise leave this field blank and 
continue. 
7.  Extract presence of lighting information (See Figure 44): If there are light poles at the 
intersection, record "Y" in "Light" field, otherwise, record "N."  
8. Verify whether the intersection is signalized or not. If the current intersection type is 
signalized (i.e., U3SG or U4SG) and the intersection is in fact unsignalized, record “N” 
in in the "Signalized" field. Similarly, if the current intersection type is unsignalized (i.e., 
U3ST or U4ST) and the intersection is in fact signalized, record “Y” in the “Signalized” 
field (See Figure 45). Note that some traffic lights are flashing yellow/red. Intersections 
with these kinds of traffic lights should also be recorded as "N," for example see 
intersection (39.37669654, -74.82407489). 

                                            
4Note: U3SG/U3ST should have 3 legs; U4ST/U4SG should have 4 legs. 
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9. Extract the total number of left-turn approaches. For signalized intersections, count 
all approaches with left-turn lane(s), and record this number in the "LT Approaches" 
field (see Table 42). For a minor stop-controlled intersection, count the number of 
approaches with left-turn lane(s) on major roads without stop-control, and record in the 
"LT Approaches" field (see Table 43). 
10. Extract the total number of right-turn approaches. This is similar to the previous step. 
For signalized intersections, count all approaches with right-turn lanes, and record in the 
"RT Approaches" field. For stop-controlled intersections, count approaches with right-
turn lanes for major roads without stop-control, and record in the "RT Approaches" field. 
11. Record the maximum number of lanes crossed by pedestrians by checking each 
crosswalk on each approach. 
 

 
Figure 43: A rural-like intersection 
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Figure 44: Presence of lighting in an intersection 

 
 

 
Figure 45: A signalized intersection 
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Table 42: Number of left-turn approaches at a signalized intersection 

LT approaches = 4 LT approaches = 4 LT approaches = 2 

   
 

Table 43: Number of left-turn approaches at a minor stop-controlled intersection 

LT approaches = 2 LT approaches = 2 LT approaches = 2 LT approaches = 0 

 
 

  

For U3ST and U4ST only: 
11. Using the names of major and minor approaches, check which approach is stop-
controlled: 
 
If only minor road is stop-controlled, record "Y" in the "Minor Stop Control" field; 
If only major road is stop-controlled, record "R"5 in the "Minor Stop Control” field; 
If an intersection is all-way stop-controlled, record "A"6 in the "Minor Stop Control" field 
and move to the next intersection. 
 
For U3SG and U4SG only: 
12. Extract intersection left-turn signal phasing type. For each approach, determine 
whether the left-turn signal type is Permissive, Protected/Permissive, or Protected, and 
record this information in the “LT Signal Phase” field. In order to identify the type of left-
turn signal phase using the Street View images of Google Maps, follow these 
guidelines: 
 

                                            
5 R means reverse. 

6 A means all-way stop-controlled. 
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Permissive:  

 U4SG: All traffic signals have three lights, and no additional sign is used.  

 U3SG:  
o For an approach with through lanes (like approaches 1 and 2 in Figure 

46), if all traffic signals have three lights and no additional sign is used, the 
approach should be identified as permissive.  

o An approach without through lanes (like approach 3 in Figure 46) should 
not be recognized as a permissive approach. 

 

 
Figure 46: An example of a three-leg intersection 

 
Protected/Permissive: One of the traffic signals has four lights and there is a sign 
indicating that left-turns are allowed on green, as shown in Figure 47. 

 
Figure 47: A sign indicating that left-turns are allowed on green 

Protected: One of the traffic signals has four lights, and there are no additional signs. 

 U4SG: Any traffic signal has four lights, and there are no additional signs.  

 U3SG:  
o For an approach with through lanes (like approaches 1 and 2 in Figure 

46), if any traffic signal has four lights and there are no additional signs, 
the approach should be identified as protected. 

o An approach without through lanes (like approach 3 in Figure 46) should 
be identified as a protected approach. 
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13. Extract right-turn-on-red information. Record the number of signalized intersection 
approaches for which right-turn-on-red is prohibited (see Figure 48) in the “NO RTOR” 
field.  
 

 
Figure 48: No-turn-on-red sign 

 

Intersection Crash Frequency and Traffic Counts 
The process of assigning traffic counts and crash data to urban and suburban 
intersections is similar to that for R2 intersections. Details of this process are presented 
in the Processing Data section. 

Urban and Suburban Intersection Dataset 

Following the data processing and extraction procedure, a total of 721 urban and 
suburban intersections were identified, as shown in Table 44. These intersections are 
also summarized by county in Table 45. 
 

Table 44: Sample size of preliminary selection and final selection 

Type U3ST U3SG U4ST U4SG 

Preliminary Sample Size 1,592 755 1,471 1,961 

Manually Reviewed 420 377 610 310 

Final Sample Size 227 164 121 209 

 
The quality of AADT data for major and minor approach at an intersection depends on 
the distance between the station and the target intersection, and the number of 
intersections between the AADT station and the target intersection. Therefore, the 
average intersection number between major/minor AADT station and the target 
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intersection, and the average distance between major/minor AADT station and the 
target intersection, are summarized in Table 46. 
 

Table 45: Sampled size by county of preliminary selection and final selection 

County Preliminary Sample Size Final Sample Size 

Atlantic 398 55 

Bergen 492 42 

Burlington 388 51 

Camden 591 91 

Cape May 183 39 

Cumberland 281 27 

Essex 298 40 

Gloucester 390 51 

Hudson 141 13 

Hunterdon 84 8 

Mercer 398 56 

Middlesex 337 38 

Monmouth 325 25 

Morris 234 29 

Ocean 217 31 

Passaic 248 30 

Salem 115 12 

Somerset 166 22 

Sussex 109 13 

Union 236 21 

Warren 148 27 

 
Table 46: Summary of intersection AADT data 

 Type 

Average 
Major 
AADT 

Average 
Minor 
AADT 

Average 
Intersection 
Number 
between 
Major 
station and 
the target 
intersection 

Average 
Intersection 
Number 
between 
Minor 
Station and 
the Target 
Intersection 

Average 
Distance 
between 
Major 
Station and 
the Target 
Intersection 
(mile) 

Average 
Distance 
between 
Minor 
Station and 
the Target 
Intersection 
(mile) 

U3ST 8,609 2,310 0.0000 0.0044 0.483 0.472 

U3SG 15,591 7,832 0.348 0.1402 0.401 0.606 

U4ST 7,140 1,427 0.165 0.0279 0.351 0.415 

U4SG 16,212 8,402 0.005 0.0000 0.426 0.419 
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Detailed Description of Sampling Results 
Three-Leg Stop-Controlled Intersections (U3ST): The final sample set contains 227 
U3ST intersections (see Figure 49). For those intersections, the average AADT on 
major road is 8,609; the average AADT on minor road is 2,310; the average intersection 
count between AADT station and target intersection on major road is 0.00; the average 
intersection count between AADT station and target intersection on minor road is 0.004; 
the average distance between AADT station and target intersection on major road is 
0.48 miles; and the average distance between AADT station and target intersection on 
minor road is 0.47 miles. 
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Figure 49: The spatial distribution of U3ST intersections 

 
Three-Leg Signalized Intersections (U3SG): The final sample set contains 164 U3SG 
intersections (see Figure 50). For those intersections, the average AADT on major road 
is 15,519; the average AADT on minor road is 7,832; the average intersection count 
between AADT station and target intersection on major road is 0.35; the average 
intersection count between AADT station and target intersection on minor road is 0.14; 
the average distance between AADT station and target intersection on major road is 
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0.40 miles; and the average distance between AADT station and target intersection on 
minor road is 0.61 miles. 

 
Figure 50: The spatial distribution of U3SG intersections 

 
Four-leg Stop-Controlled Intersections (U4ST): The final sample set contains 121 U4ST 
intersections (see Figure 51). For those intersections, the average AADT on major road 
is 7,140; the average AADT on minor road is 1,427; the average intersection count 
between AADT station and target intersection on major road is 0.17; the average 
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intersection count between AADT station and target intersection on minor road is 0.03; 
the average distance between AADT station and target intersection on major road is 
0.35 miles; and the average distance between AADT station and target intersection on 
minor road is 0.42 miles. 

 
Figure 51:The spatial distribution of U4ST intersections 

Four-leg Signalized Intersections (U4SG): The final sample set contains 209 U4SG 
intersections (see Figure 52). For those intersections, the average AADT on major road 
is 16,212; the average AADT on minor road is 8,402; the average intersection count 
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between AADT station and target intersection on major road is 0.005; the average 
intersection count between AADT station and target intersection on minor road is 0.00; 
the average distance between AADT station and target intersection on major road is 
0.43 miles; and the average distance between AADT station and target intersection on 
minor road is 0.42 miles. 
 

 
Figure 52: The spatial distribution of U4SG intersections 
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Calibration Results 

Chapter 12 of the HSM provides a crash prediction model for R2 intersections. The 
crashes are grouped based on collision type as multi-vehicle, single-vehicle, vehicle-
pedestrian, and vehicle-bicycle collisions. The base SPFs for U3ST, U4ST, U4ST, and 
U4SG multi- and single-vehicle collisions include the AADTmaj and AADTmin variables, as 
shown in Table 47 and Table 48.  
 

Table 47: Multi-vehicle collision SPFs for urban intersections in the HSM 

Type SPF Reliable AADT Range 

U3ST 

𝑁𝑏𝑖𝑚𝑣 3𝑆𝑇 = 𝑒𝑥𝑝[−13.36 + 1.11 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.41

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,45700] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,9300] 

U3SG 

𝑁𝑏𝑖𝑚𝑣 3𝑆𝐺 = 𝑒𝑥𝑝[−12.13 + 1.11 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.26

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,46800] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,5900] 

U4ST 

𝑁𝑏𝑖𝑚𝑣 4𝑆𝑇 = 𝑒𝑥𝑝[−8.90 + 0.82 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.25

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
  

𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,58100] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,16400] 

U4SG 
𝑁𝑏𝑖𝑚𝑣 4𝑆𝐺 = 𝑒𝑥𝑝[−10.99 + 1.07 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.23

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,80200] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,49100] 

  
Table 48: Single-vehicle collision SPFs for urban intersections in the HSM 

Type SPF Reliable AADT Range 

U3ST 
𝑁𝑏𝑖𝑠𝑣 3𝑆𝑇 = 𝑒𝑥𝑝[−6.81 + 0.16 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.51

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,45700] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,9300] 

U3SG 

𝑁𝑏𝑖𝑠𝑣 3𝑆𝐺 = 𝑒𝑥𝑝[−9.02 + 0.42 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.40

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,46800] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,5900] 

U4ST 
𝑁𝑏𝑖𝑠𝑣 4𝑆𝑇 = 𝑒𝑥𝑝[−5.33 + 0.33 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.12

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,58100] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,16400] 

U4SG 
𝑁𝑏𝑖𝑠𝑣 4𝑆𝐺 = 𝑒𝑥𝑝[−10.21 + 0.68 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.27

× 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 
𝐴𝐴𝐷𝑇𝑚𝑎𝑗 ∈ [0,80200] 

𝐴𝐴𝐷𝑇𝑚𝑖𝑛 ∈ [0,49100] 

 

                                            𝑁𝑠𝑝𝑓 𝑖𝑛𝑡 = 𝑁𝑏𝑖𝑚𝑣 + 𝑁𝑏𝑖𝑠𝑣                                                      (29)  

Where, 𝑁𝑏𝑖𝑚𝑣 and 𝑁𝑏𝑖𝑠𝑣 are the predicted average number of multiple-vehicle and 
single-vehicle collisions for base conditions, respectively. 
 

𝑁𝑏𝑖 = 𝑁𝑠𝑝𝑓 𝑖𝑛𝑡. 𝐶𝑀𝐹1 … 𝐶𝑀𝐹6 

 
(30) 
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Where, 𝑁𝑏𝑖 is the predicted average crash frequency of an intersection excluding 
vehicle-pedestrian and vehicle-bicycle collisions, and 𝐶𝑀𝐹1 through 𝐶𝑀𝐹6 are the CMFs 
for intersection left-turn lanes, left-turn signal phasing, right-turn lanes, right-turn-on-red, 
lighting, and red-light cameras, respectively. 
 
Vehicle-pedestrian collisions SPFs for each intersection type are presented in Table 49.  
 

Table 49: Vehicle-pedestrian collision SPFs for urban intersections in the HSM 

Type SPF 

3SG 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 = 𝑒𝑥𝑝[−6.6 + 0.05. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑇𝑂𝑇) + 0.24. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛 𝐴𝐴𝐷𝑇𝑇𝑂𝑇⁄ )]

+ 0.41. ln(𝑃𝑒𝑑𝑉𝑜𝑙) + 0.09. 𝑛𝑙𝑎𝑛𝑒𝑠𝑥 
4SG 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒 = 𝑒𝑥𝑝[−9.53 + 0.4. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑇𝑂𝑇) + 0.26. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛 𝐴𝐴𝐷𝑇𝑇𝑂𝑇⁄ )]

+ 0.45. ln(𝑃𝑒𝑑𝑉𝑜𝑙) + 0.04. 𝑛𝑙𝑎𝑛𝑒𝑠𝑥 
3ST 𝑁𝑝𝑒𝑑𝑖 = 𝑁𝑏𝑖. 0.021 

4ST 𝑁𝑝𝑒𝑑𝑖 = 𝑁𝑏𝑖. 0.022 

 Note: 𝐴𝐴𝐷𝑇𝑇𝑂𝑇 =  𝐴𝐴𝐷𝑇𝑚𝑎𝑗 +  𝐴𝐴𝐷𝑇𝑚𝑖𝑛, 𝑃𝑒𝑑𝑉𝑜𝑙 is the daily pedestrian volume 

crossing all intersection legs, and 𝑛𝑙𝑎𝑛𝑒𝑠𝑥 is the maximum number of traffic lanes 
crossed by pedestrians. 

 
Note that CMF for vehicle-pedestrian collisions only apply at signalized intersections. 
 

𝑁𝑝𝑒𝑑𝑖 = 𝑁𝑝𝑒𝑑𝑏𝑎𝑠𝑒. 𝐶𝑀𝐹1. 𝐶𝑀𝐹2. 𝐶𝑀𝐹3 (31) 

 

Where, 𝐶𝑀𝐹1 is for the number of bus stops near an intersection, 𝐶𝑀𝐹2 is for presence 
of a school near an intersection, and 𝐶𝑀𝐹3 is for the presence of alcohol sales 
establishments near an intersection. 
 

Table 50: Vehicle-bicycle collision SPFs for urban intersections in the HSM 

Type SPF = 𝑁𝑏𝑖. 𝑓𝑏𝑖𝑘𝑒  

3ST 𝑁𝑏𝑖𝑘𝑒 = 𝑁𝑏𝑖. 0.016 

3SG 𝑁𝑏𝑖𝑘𝑒 = 𝑁𝑏𝑖. 0.011 

4SG 𝑁𝑏𝑖𝑘𝑒 = 𝑁𝑏𝑖. 0.018 

4ST 𝑁𝑏𝑖𝑘𝑒 = 𝑁𝑏𝑖. 0.015 

 
The total number of predicted crashes for an intersection, 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡, can then be 

calculated as: 
𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡 = 𝑁𝑏𝑖 + 𝑁𝑝𝑒𝑑𝑖 + 𝑁𝑏𝑖𝑘𝑒 (32) 

 
The results of the calibration factors are shown in Table 51. The Calibrator tool 
developed by the FHWA was used to calculate the calibration factors and measure their 
goodness of fit (77). According to the FHWA report, a reasonable upper threshold for the 
coefficient of variation of a calibration factor is 0.10 to 0.15. In that respect, the results 
shown in Table 51 are found to be acceptable. 
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Table 51: Calibration factors of urban and suburban Intersections 

Type Calibration Factor Standard Error Coefficient of Variation 

U3ST 2.61 ±0.29 0.11 

U3SG 3.60 ±0.36 0.10 

U4ST 1.66 ±0.25 0.15 

U4SG 4.25 ±0.40 0.09 

 
The CURE plots for U3ST, U3SG, U4ST, and U4SG type intersections with respect to 
major and minor AADTs are shown in Figure 53 through Figure 56. 
 

 
Figure 53: CURE plots for U3ST 

 
Figure 54: CURE plots for U3SG 
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Figure 55: CURE plots for U4ST 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 56: CURE plots for U4SG 

It can be observed that with the exception of U4ST, the cumulative residuals tend to 
stray from the acceptable lower and upper bounds. In addition, the calibration factors for 
U3SG and U4SG are significantly high. The results suggest that the development of 
SPFs is warranted. The following subsection presents the SPF development results. 

Development Results 

The SPFs for urban and suburban intersection multi-vehicle and single-vehicle collisions 
were developed using the available datasets, based on the negative binomial model 
suggested by the HSM. The model estimation was performed in R statistical package. 
The SPF development equations for total, multi-vehicle and single-vehicle collisions for 
various intersection types are shown in Table 52. The statistical results of each 
developed function for multi-vehicle and single-vehicle collisions at U3ST, U4ST, U3SG, 
and U4SG are presented in Table 52 through Table 56.  
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Table 52: SPF functions developed for total, multi and single vehicle collisions 

Segment  Crash Type SPF 

U3ST 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−5.855 + 0.434. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.384. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−6.892 + 0.483. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.429. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−4.895 + 0.283. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.219. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U3SG 
 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−7.553 + 0.693. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.321. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.019 + 0.713. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.336. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.093 + 0.676. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.141. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U4ST 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.269 + 0.743. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.343. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.959 + 0.752. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.392𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.359 + 0.724. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.142. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U4SG 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−9.593 + 0.968. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.308. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−10.307 + 1.022. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.317. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−5.804 + 0.424. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.173. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

 
 

Table 53: SPF development results for total, multi and single vehicle collisions at 
U3ST 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -5.85500 0.43892 -13.340 <2e-16 *** 

Log(AADTMAJ) 0.43426 0.05039 8.618 <2e-16 *** 

Log(AADTMIN) 0.38403 0.03590 10.696 <2e-16 *** 

k 0.883 df: 1079 AIC: 4220.5 
 

Multi-Vehicle Intercept -6.89172 0.51519 -13.377 <2e-16 *** 

Log(AADTMAJ) 0.48314 0.05820 8.301 <2e-16 *** 

Log(AADTMIN) 0.42899 0.04076 10.525 <2e-16 *** 

k 1.085 df: 1079 AIC: 3772.3 
 

Single-Vehicle Intercept -4.89471 0.66523 -7.358 1.87e-13 *** 

Log(AADTMAJ) 0.28321 0.07801 3.630 0.000283 *** 

 Log(AADTMIN) 0.21852 0.05616 3.891 9.99e-05 *** 

 k 1.238 df: 1879 AIC: 1926 
 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
 



 

124 
 

Table 54: SPF development results for total, multi and single vehicle collisions at 
U3SG 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -7.55286 0.72757 -10.381 <2e-16 *** 

Log(AADTMAJ) 0.69293 0.07706 8.992 <2e-16 *** 

Log(AADTMIN) 0.32068 0.04378 7.325 2.39e-13 *** 

k 0.417 df: 784 AIC: 4550.3 
 

Multi-Vehicle Intercept -8.01883 0.77259 -10.379 <2e-16*** 

Log(AADTMAJ) 0.71255 0.08158 8.734 <2e-16*** 

Log(AADTMIN) 0.33593 0.04646 7.231 4.79e-13*** 

k 0.458 df: 784 AIC: 4377.3 
 

Single-Vehicle Intercept -8.09349 1.36612 -5.924 3.13e-09 *** 

Log(AADTMAJ) 0.67635 0.14129 4.787 1.69e-06 *** 

 Log(AADTMIN) 0.14110 0.07929 1.779 0.0752 . 

 k 0.453 df: 784 AIC: 1799.6 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
 

Table 55: SPF development results for total, multi and single vehicle collisions at 
U4ST 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -8.26895 0.54191 -15.26 <2e-16*** 

Log(AADTMAJ) 0.74256 0.05840 12.71 <2e-16*** 

Log(AADTMIN) 0.34296 0.04303 7.97 1.59E-15 *** 

k 0.507 df: 569 AIC: 1892.7 
 

Multi-Vehicle Intercept -8.9590 0.59658 -15.017 <2e-16*** 

Log(AADTMAJ) 0.75245 0.06390 11.775 <2e-16*** 

Log(AADTMIN) 0.39214 0.04633 8.464 <2e-16*** 

k 0.502 df: 569 AIC: 1687.6 
 

Single-Vehicle Intercept -8.35851 1.09410 -7.640 2.18e-14 *** 

Log(AADTMAJ) 0.72436 0.11811 6.133 8.64e-10 *** 

 Log(AADTMIN) 0.14217 0.08641 1.645 0.0999 . 

 k 1.832 df: 569 AIC: 833.23 
 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
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Table 56: SPF development results for total, multi and single vehicle collisions at 
U4SG 

 Variable Estimate  Std Error z-value Pr( > |z|) 

Total Intercept -9.59343 0.44441 -21.587 <2e-16*** 

Log(AADTMAJ) 0.96824 0.05427 17.842 <2e-16*** 

Log(AADTMIN) 0.30818 0.04068 7.576 3.57e-14 *** 

k 0.338 df: 969 AIC: 6388.1 
 

Multi-Vehicle Intercept -10.30717 0.45984 -22.415 <2e-16 *** 

Log(AADTMAJ) 1.02248 0.05580 18.325 <2e-16 *** 

Log(AADTMIN) 0.31697 0.04175 7.593 3.14e-14*** 

k 0.347 df: 969 AIC: 6199.9 
 

Single-Vehicle Intercept -5.80447 0.85712 -6.772 1.27e-11 *** 

Log(AADTMAJ) 0.42360 0.10523 4.026 5.68e-05 *** 

 Log(AADTMIN) 0.17335 0.08069 2.148 0.0317 * 

 k 0.470 df: 969 AIC: 2407.7 

Signif. Codes: 0.001:***; 0.01:**; 0.05:*; 0.1:. 
 

The AADTMAJ and AADTMIN ranges for U3ST are [0 – 44,750 veh/day] and [0 – 15,250 
veh/day], respectively; for U3SG are [0 – 36,250 veh/day] and [0 – 20,000 veh/day], 
respectively; for U4ST are [0 – 41,250 veh/day] and [0 – 11,500 veh/day], respectively, 
and for U4SG are [0 – 62,500 veh/day] and [0 – 31,750 veh/day], respectively.  
 

Table 57 presents 𝑓𝑏𝑖𝑘𝑒, the vehicle-bicycle collision adjustment factor calculated using 
the 2011 to 2015 NJ crash database. 
 

Table 57: SPF development for vehicle-bicycle collisions at urban and suburban 
intersections 

Type Bicycle Crash Adjustment Factors 𝑓𝑏𝑖𝑘𝑒 

U3ST 0.011 

U3SG 0.008 

U4ST 0.009 

U4SG 0.007 

 
Table 58 presents the developed SPFs for vehicle-pedestrian collisions at urban and 
suburban intersections. Note that the values for the variable PedVol, i.e., daily 
pedestrian volume, used in the estimation process was adopted from the default values 
given in the HSM, since pedestrian volumes are not available for most intersections. 
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The statistical results of the developed SPFs for the vehicle pedestrian collisions at 
U3SG and U4SG are presented in Table 59. 
 

Table 58: SPF development for urban intersections – PV 

Type SPF/Pedestrian Crash Adjustment Factor 

U3ST 0.0134 

U3SG 𝑁𝑝𝑒𝑑 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−18.636 + 1.145 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.0898 × 𝑃𝑒𝑑𝑉𝑜𝑙]  

U4ST 0.0142 

U4SG 𝑁𝑝𝑒𝑑 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−18.935 + 1.245. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.874. ln (𝑃𝑒𝑑𝑉𝑜)𝑙 − 0.135. 𝑀𝑎𝑥𝐿𝑎𝑛𝑒𝑠] 

 
 

Table 59: SPF development results for vehicle-pedestrian collisions at U3SG 
and U4SG 

 Variable Estimate  Std Error z-value Pr( > |z|) 

U3SG Intercept -18.6357 3.5278 -5.283 1.27e-07 *** 

Log(AADTTOT) 1.1446 0.3498 3.272 0.00107 ** 

Log(PedVol) 0.8982 0.1438 6.248 4.15e-10 *** 

k 1.16 df: 969 AIC: 585.52 
 

U4SG Intercept -18.93484 2.03255 -9.316 < 2e-16 *** 

Log(AADTTOT) 1.24547 0.20014 6.223 4.88e-10 *** 

Log(PedVol) 0.87426 0.10465 8.354 < 2e-16 *** 

MaxLanes -0.13539 0.06785 -1.995 0.046 * 

k 1.35 df: 969 AIC: 1243.8 
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CONCLUSIONS 

SPFs in the HSM were developed using historic crash data collected over a number of 
years at sites of the same facility type in different states. Because the SPFs provided in 
the HSM are developed using data from various states, it is more than likely that they 
cannot be transferred directly to other locations and times. Thus, the HSM’s predictive 
model often needs to be calibrated to capture local state or geographic conditions. 
Moreover, accident frequencies for similar facility types can also vary from one 
jurisdiction to another, since their locations differ in climate, driver population and 
characteristics, accident reporting threshold, accident reporting practices, and other 
contributing factors.  
 
To make the SPFs better accommodate the local data, two strategies are usually 
undertaken:  

 The first strategy is to calibrate SPFs provided in the HSM so that the contents of 
HSM can be fully leveraged.  

 The second strategy is to develop location-specific SPFs, regardless of the 
predictive modeling framework in the HSM. 

The main objective of this research project is to either (1) calibrate the SPFs provided in 
the HSM using New Jersey (NJ) data or (2) develop new, NJ-specific SPFs. The facility 
types considered for this research project include segments and intersections of rural 
two-lane two-way, rural multilane, and urban and suburban roads. 
 
Calibrating the SPFs used in the predictive models of the HSM requires data from a 
limited number of sites (for each facility type) from NJ, using the methods suggested in 
Part C of the HSM. Developing NJ-specific SPFs would provide more accurate results, 
but requires data from a larger sample of sites, and also involves the application of 
generalized linear models.  
 
The research team completed several tasks to achieve the main project objective: 
 

 Conducted an in-depth review of the studies in the literature that focused on the 
calibration of the SPFs used in the HSM and the development of new SPFs, and 
identified the related calibration and development issues.  

 Identified the key sources of data required for calibration and development of 
SPFs. These include roadway characteristics data, traffic volume data, and crash 
data.  

 Developed a computer code to read and process the compiled database to (a) 
filter out inconsistent data entries, (b) identify facility types, (c) execute the 
roadway segmentation process, (d) assign crash statistics for each facility, and 
(e) generate a complete database for each facility type to be used in calibration 
and/or development of SPFs. 

 Provided recommendations and activities that include: 
(a) Improvements to data collection and recording practices that would facilitate 

easier data extraction required for the SPF calibration/development process. 
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(b) A workshop that demonstrates the step-by-step approach for using the SPFs 
for the NJDOT staff and other interested parties.  

 
As mentioned in the Available Data Sources section, existing data are grouped into 
three categories by type: (1) Traffic Volume, (2) Roadway Features, and (3) Roadway 
Crashes. Information regarding each data source is summarized in Table 4.   
 
Traffic volume data include the sensor database, maintained by the New Jersey Traffic 
Monitoring Program at NJDOT, and hourly TMC collected at various intersections.  
 
Roadway features data were extracted from three data sources: the Straight Line 
Diagrams (SLD) database, Geographic Information Systems (GIS) maps, and Google 
StreetView. NJDOT’s SLD database is the richest source of information for roadway 
features. This database was provided by NJDOT in MS Access™ format. It includes 
various tables on different geometric and operational aspects of NJ roadways, as shown 
in Table 5.  
 
The crash data were provided by NJDOT for the years 2011 to 2015. Table 6 lists the 
key data elements used as part of this study. 
 
Once the available datasets were gathered and cleaned, the research team developed 
a computer code in R programming language to read and process the compiled 
database to (a) filter out inconsistent data entries, (b) identify facility types, (c) execute 
the roadway segmentation process, (d) assign crash statistics for each facility, and (e) 
generate a complete database for each facility type to be used in calibration and/or 
development of SPFs.  
 
The generic procedure for generating the intersection database per facility type is 
shown in Figure 12. Generating the homogeneous roadway database for each facility 
was a more challenging process than that for the intersection database.  
 
A homogeneous segment starts at an intersection or at any point where various 
geometric and operational features of the roadway change at either direction of the 
facility. The generic procedure for generating homogeneous database per facility type is 
shown in Figure 13.  
 
In addition to the automatically generated data, the research team conducted an 
extensive data extraction process to meet the data requirements of the HSM, as 
described within the respective section for each facility type. 
Furthermore, the research team developed a novel clustering method for automatically 
estimating horizontal curvature data and CMFs using GIS roadway shapefiles, as 
presented in the Rural Two-Lane Two-Way Segments section. 
 
Table 60 presents the sample size for each facility type used for calibration and/or 
development of SPFs for segments and intersections separately. 
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Table 60: Sample size of each facility type used for calibration and development  

SEGMENTS 

Facility Type Sample Size SPF 

R2U  756 Calibration and Development 

R4U 32 Calibration 

R4D 34 Calibration 

U2U 459 Calibration and Development 

U3T n/a n/a 

U4U 514 Calibration and Development 

U4D 387 Calibration and Development 

U5T n/a n/a  

INTERSECTIONS 

Facility Type Sample Size SPF 

R23ST 314 Calibration and Development 

R24ST 149 Calibration and Development 

R23SG 15 Calibration  

R24SG 45 Calibration and Development 

RM3ST 3 n/a 

RM4ST 1 n/a 

RM3SG 0 n/a 

RM4SG 6 n/a 

U3ST 227 Calibration and Development 

U4ST 121 Calibration and Development 

U3SG 164 Calibration and Development 

U4SG 209 Calibration and Development 

 
It can be seen in Table 60 that among the original facility types, two segment types, 
namely U3T and U5T, and rural multilane intersections could not be included in the 
calibration and development process due to lack of data. 
 
In order to calculate a calibration factor, the observed crash frequency and the predicted 
crash frequency for each intersection and segment are required. The observed crash 
frequency was calculated for each segment as explained in the Processing Data 
section. The predicted crash frequency can be calculated using the SPF and the 
corresponding CMF values given in the HSM.   
 
The Calibrator tool developed by the FHWA was used to calculate the calibration factors 
and measure their goodness of fit (77). 
 
Table 61 presents the calibration factors calculated for each facility type. 
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Table 61: Calibration factors for each facility type 

SEGMENTS  

Facility Type Calibration Factor Standard Error Coefficient of Variation 

R2U  1.55 ±0.12 0.08 

R4U 1.12 ±0.42 0.38 

R4D 1.70 ±0.80 0.47 

U2U 1.264 ±0.14 0.11 

U3T n/a n/a n/a 

U4U 1.097 ±0.15 0.13 

U4D 1.596 ±0.21 0.13 

U5T n/a n/a n/a 

INTERSECTIONS  

Facility Type Sample Size   

R23ST 0.88 ±0.08 0.09 

R24ST 0.88 ±0.11 0.13 

R23SG* - - - 

R24SG 0.85 ±0.16 0.18 

RM3ST n/a n/a n/a 

RM4ST n/a n/a n/a 

RM3SG n/a n/a n/a 

RM4SG n/a n/a n/a 

U3ST 2.61 ±0.29 0.11 

U3SG 3.60 ±0.36 0.10 

U4ST 1.66 ±0.25 0.15 

U4SG 4.25 ±0.40 0.09 
Note: *R23SG intersection type is not included in the HSM. 

 

In addition, to assess the validity of the calculated calibration factors, the team used the 

CURE plots, which are simply graphs of the cumulative residuals (observed minus 

predicted crashes) against variables of interest. The residuals between the estimated 

and observed values are assumed to be independent random variables. It is expected 

that the CURE plots should be within the expected limits of an unbiased random walk, 

i.e., plus/minus two standard deviations. CURE plots for each facility type are presented 

in their respective sections throughout the report. 

Using the same data used for calibration, the research team developed NJ-specific 
SPFs for facilities with a sufficient number of data points using the crash data from 2011 
to 2015. SPFs were estimated based on the negative binomial model suggested by the 
HSM. The model estimation was performed in R statistical package. 
 
Table 62 and Table 63 present the developed SPFs for segments and intersections per 
facility type and collision type, where applicable, respectively. 
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Table 62: Developed SPFs for segments 

Segment  Crash Type Developed SPFs 

R2U Total 𝑁𝑇𝑂𝑇 𝑅2𝑈 = 𝑒𝑥𝑝[−6.41 + 0.83. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 0.86. 𝑙𝑛(𝐿)] 

U2U 

Total 𝑁𝑇𝑂𝑇 𝑈2𝑈 = 𝑒𝑥𝑝[−9.798 + 1.188. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−14.411 + 1.641. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈2𝑈 = 𝑒𝑥𝑝[−3.977 + 0.435. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4U 
 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑈 = 𝑒𝑥𝑝[−12.01 + 1.432. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−13.794 + 1.59. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑈 = 𝑒𝑥𝑝[−6.961 + 0.751. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

U4D 

Total 𝑁𝑇𝑂𝑇 𝑈4𝐷 = 𝑒𝑥𝑝[−3.00 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−3.363 + 0.558. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝐷 = 𝑒𝑥𝑝[−4.687 + 0.543. 𝑙𝑛(𝐴𝐴𝐷𝑇) + 𝑙𝑛(𝐿)] 

 
Table 63: Developed SPFs for intersections 

Intersection  Crash Type Developed SPFs 

R23ST Total 𝑁𝑠𝑝𝑓 3𝑆𝑇 = 𝑒𝑥𝑝[−6.139 + 0.498. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.296. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]      

R23SG Total 𝑁𝑠𝑝𝑓 3𝑆𝐺 = 𝑒𝑥𝑝[−12.140 + 1.184. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.281. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]           

R24ST Total 𝑁𝑠𝑝𝑓 4𝑆𝑇 = 𝑒𝑥𝑝[−3.716 + 0.159. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.426. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]      

R24SG Total 𝑁𝑠𝑝𝑓 4𝑆𝐺 = 𝑒𝑥𝑝[−5.811 + 0.345. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.526. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)]            

U3ST 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−5.855 + 0.434. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.384. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−6.892 + 0.483. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.429. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝑇 = 𝑒𝑥𝑝[−4.895 + 0.283. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.219. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U3SG 
 

Total 𝑁𝑇𝑂𝑇 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−7.553 + 0.693. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.321. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.019 + 0.713. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.336. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−8.093 + 0.676. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.141. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Vehicle-
Pedestrian 

𝑁𝑝𝑒𝑑 𝑈3𝑆𝐺 = 𝑒𝑥𝑝[−18.636 + 1.145 × 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.0898 × 𝑃𝑒𝑑𝑉𝑜𝑙] 

U4ST 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.269 + 0.743. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.343. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.959 + 0.752. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.392𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝑇 = 𝑒𝑥𝑝[−8.359 + 0.724. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.142. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

U4SG 

Total 𝑁𝑇𝑂𝑇 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−9.593 + 0.968. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.308. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Multi-Vehicle 𝑁𝑀𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−10.307 + 1.022. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.317. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Single-Vehicle 𝑁𝑆𝑉 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−5.804 + 0.424. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗) + 0.173. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛)] 

Vehicle-
Pedestrian 

𝑁𝑝𝑒𝑑 𝑈4𝑆𝐺 = 𝑒𝑥𝑝[−18.935 + 1.245. 𝑙𝑛(𝐴𝐴𝐷𝑇𝑡𝑜𝑡) + 0.874. ln (𝑃𝑒𝑑𝑉𝑜)𝑙

− 0.135. 𝑀𝑎𝑥𝐿𝑎𝑛𝑒𝑠] 

 
The calculated calibration factors and the developed SPFs are being embedded in the 
safety analysis spreadsheets used by the NJDOT staff. These spreadsheets were 
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modified so that users can either select the SPFs provided in the HSM and apply the 
calculated calibration factors, or simply use the NJ-specific SPFs developed by the 
research team. 
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Saito et al. (2011) Utah 

       𝑁 =  𝑒𝑥𝑝[−12.06 + 0.84 ∗ ln(𝐴𝐴𝐷𝑇) + 0.45. 𝐿 − 0.0271. 𝐶𝑇 + 0.0824. 𝑆] 
Where, 𝑁 is the predicted number of total annual crashes, 𝐴𝐴𝐷𝑇 is annual average daily traffic, 𝐿 is segment length in 
miles, 𝐶𝑇 is percentage of combo-unit trucks in percentages, and 𝑆 is speed limit in miles per hour. 
Srinivasan and Carter (2010) North Carolina 

𝑁 = 𝐿. 𝑒𝑥𝑝[−4.0852 + 0.583 ∗ ln (𝐴𝐴𝐷𝑇)] 
Where, 𝑁 is the predicted number of total annual crashes, 𝐴𝐴𝐷𝑇 is annual average daily traffic, and 𝐿 is segment length in 
miles. 
Lubliner et al. (2014) Kansas 

       𝑁 = exp[−10.07 + 1.01. ln(𝐴𝐴𝐷𝑇) + 0.85. ln(𝐿) +  0.58. 𝑅𝐻𝑅] 
Where, 𝑁 is the predicted number of total annual crashes excluding animal crashes7, 𝐴𝐴𝐷𝑇 is annual average daily traffic, 

𝐿 is segment length in miles, and 𝑅𝐻𝑅 is roadside hazard rating, as defined in the HSM. 
Banihashemi (2011) Washington 

𝑁 = 𝐿. 𝑒𝑥𝑝[−8.46345 + 1.05 ∗ ln (𝐴𝐴𝐷𝑇)] 
Shankar and Madanat (2015) California    

𝑁 = 𝐿. 𝑒𝑥𝑝[−5.13 + 0.68 ∗ ln (𝐴𝐴𝐷𝑇)] 
Garber et al. (2010) Virginia 
       𝑁 = 𝐿. 𝑒𝑥𝑝[−5.71 + 0.744 ∗ ln (𝐴𝐴𝐷𝑇)] 
Sipple (2014) Idaho 

𝑁 = 𝐿. 𝑒𝑥𝑝[−5.7853 + 0.7501 ∗ ln (𝐴𝐴𝐷𝑇)] 
 
Mehta and Lou (2013) Alabama 

𝑁 = 𝐿. 𝑒𝑥𝑝[−7.135 + 0.916 ∗ ln (𝐴𝐴𝐷𝑇)] 
 
 
 
 
 
 

                                            
7 Lubliner et al (2014) stated that the number of animal crashes was significantly high in Kansas and it was difficult to determine where these 
crashes would occur. 
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Srinivasan and Carter (2010) North Carolina 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−5.8986 + 0.7673 ∗ ln(𝐴𝐴𝐷𝑇) + 𝑙𝑛𝐿] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−5.89869773 + 0.5584 ∗ ln(𝐴𝐴𝐷𝑇) + 𝑙𝑛𝐿] 

Where, 𝑁 is the predicted number of total annual crashes, 𝐴𝐴𝐷𝑇 is annual average daily traffic, and 𝐿 is segment length in 

miles. 

Dissanayake and Aziz (2016) Kansas 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−6.317 + 0.795 ∗ ln(𝐴𝐴𝐷𝑇) + 0.898. 𝑙𝑛𝐿] 

Fatal/Injury Crashes,      𝑁 = 𝑒𝑥𝑝[−10.030 + 1.0599 ∗ ln(𝐴𝐴𝐷𝑇) + 0.399. 𝑙𝑛𝐿] 

Shankar and Madanat (2015) California 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−4.36 + 0.60 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     n/a 

Kweon and Lim (2014) Virginia 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−7.47 + 0.88 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−8.05 + 0.84 ∗ ln (𝐴𝐴𝐷𝑇)] 

Tegge et al. (2010) Illionis 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−7.767 + 0.923 ∗ ln (𝐴𝐴𝐷𝑇)] 

Mehta and Lou (2013) Alabama    𝑁 = 𝐿. 𝑒𝑥𝑝[−7.706 + 0.974 ∗ ln (𝐴𝐴𝐷𝑇)] 
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Srinivasan and Carter (2010) North Carolina 

Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−5.0970 + 0.7309 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−5.7277 + 0.6868 ∗ ln (𝐴𝐴𝐷𝑇)] 

Where, 𝑁 is the predicted number of total annual crashes, 𝐴𝐴𝐷𝑇 is annual average daily traffic, and 𝐿 is segment length in 

miles. 

Dissanayake and Aziz (2016) Kansas 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−6.347 + 0.822 ∗ ln(𝐴𝐴𝐷𝑇) + 0.912. ln (𝐿)] 

Fatal/Injury Crashes,      𝑁 = 𝑒𝑥𝑝[−8.206 + 0.817 ∗ ln(𝐴𝐴𝐷𝑇) + 0.747. ln (𝐿)] 

Shankar and Madanat (2015) California 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−4.49 + 0.60 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     n/a 

Kweon and Lim (2014) Virginia 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−6.91 + 0.82 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−8.03 + 0.84 ∗ ln (𝐴𝐴𝐷𝑇)] 

Tegge et al. (2010) Illionis 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−3.005 + 0.259 ∗ ln (𝐴𝐴𝐷𝑇)] 
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Srinivasan and Carter (2010) North Carolina8 

Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−6.5287 + 0.8777 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−7.6112 + 0.8801 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,      𝑁 = 𝐿. 𝑒𝑥𝑝[−7.3781 + 0.9212 ∗ ln (𝐴𝐴𝐷𝑇)] 

Shankar and Madanat (2015) California2 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−7.09 + 0.98 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,     𝑁 = 𝐿. 𝑒𝑥𝑝[−8.81 + 1.11 ∗ ln (𝐴𝐴𝐷𝑇)] 

Tegge et al. (2010) Illionis2 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−3.557 + 0.462 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     n/a 

Kim et al. (2015) Alabama 

Total Crashes (Multiple Vehicle),                                  𝑁 = 𝐿. 𝑒𝑥𝑝[−17.062 + 1.957 ∗ ln (𝐴𝐴𝐷𝑇)]     

Total Crashes (Single Vehicle),              𝑁 = 𝐿. 𝑒𝑥𝑝[−5.926 + 0.487 ∗ ln (𝐴𝐴𝐷𝑇)]   

Fatal/Injury Crashes,     n/a 

Property Damage Only,     n/a 

 
 
 

                                            
8 Not specified whether divided or not. 
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Kim et al. (2015) Alabama 

Total Crashes (Multiple Vehicle),                              𝑁 = 𝐿. 𝑒𝑥𝑝[−8.258 + 1.073 ∗ ln (𝐴𝐴𝐷𝑇)]     

Total Crashes (Single Vehicle),              𝑁 = 𝐿. 𝑒𝑥𝑝[−11.442 + 1.065 ∗ ln (𝐴𝐴𝐷𝑇)]   

Fatal/Injury Crashes,     n/a 

Property Damage Only,     n/a 
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Kim et al. (2015) Alabama 

Total Crashes (Multiple Vehicle),                              𝑁 = 𝐿. 𝑒𝑥𝑝[−21.383 + 2.479 ∗ ln (𝐴𝐴𝐷𝑇)]     

Total Crashes (Single Vehicle),           𝑁 = 𝐿. 𝑒𝑥𝑝[−5.713 + 0.498 ∗ ln (𝐴𝐴𝐷𝑇)]   

Fatal/Injury Crashes,     n/a 

Property Damage Only,     n/a 

 
 
 
 
 

Srinivasan et al. (2011) Florida 
Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−11.010 + 1.185 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     n/a 

Kim et al. (2015) Alabama 

Total Crashes (Multiple Vehicle),                                   𝑁 = 𝐿. 𝑒𝑥𝑝[−11.037 + 1.294 ∗ ln (𝐴𝐴𝐷𝑇)]     

Total Crashes (Single Vehicle),                      𝑁 = 𝐿. 𝑒𝑥𝑝[−5.570 + 0.446 ∗ ln (𝐴𝐴𝐷𝑇)]   

Fatal/Injury Crashes,     n/a 

Property Damage Only,     n/a 
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Kim et al. (2015) Alabama 

Total Crashes (Multiple Vehicle),                              𝑁 = 𝐿. 𝑒𝑥𝑝[−3.762 + 0.539 ∗ ln (𝐴𝐴𝐷𝑇)]     

Total Crashes (Single Vehicle),                𝑁 = 𝐿. 𝑒𝑥𝑝[−1.923 + 0.010 ∗ ln (𝐴𝐴𝐷𝑇)]   

Fatal/Injury Crashes,     n/a 

Property Damage Only,     n/a 

 
 
 

9 
Srinivasan and Carter (2010) North Carolina 

Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−4.1053 + 0.6750 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−4.5964 + 0.6113 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,              𝑁 = 𝐿. 𝑒𝑥𝑝[−5.0670 + 0.7297 ∗ ln (𝐴𝐴𝐷𝑇)] 

Shankar and Madanat (2015) California 

Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−7.11 + 1.01 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,              𝑁 = 𝐿. 𝑒𝑥𝑝[−7.23 + 0.97 ∗ ln (𝐴𝐴𝐷𝑇)] 

Kweon and Lim (2014) Virginia 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−9.14 + 1.07 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−10.19 + 1.06 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     n/a 

                                            
9 This definition does not exist in the HSM – there are 5 segment categories for urban/suburban arterials in the manual 
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Tegge et al. (2010) Illionis 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−6.206 + 0.761 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     n/a 

 
 
 

10 
Srinivasan and Carter (2010) North Carolina 
Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−5.2849 + 0.8114 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−5.8160 + 0.756 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     𝑁 = 𝐿. 𝑒𝑥𝑝[−6.4065 + 0.8813 ∗ ln (𝐴𝐴𝐷𝑇)] 

Shankar and Madanat (2015) California 

Total Crashes,      𝑁 = 𝐿. 𝑒𝑥𝑝[−5.86 + 0.91 ∗ ln (𝐴𝐴𝐷𝑇)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,     𝑁 = 𝐿. 𝑒𝑥𝑝[−6.13 + 0.89 ∗ ln (𝐴𝐴𝐷𝑇)] 

Kweon and Lim (2014) Virginia 

Total Crashes,       𝑁 = 𝐿. 𝑒𝑥𝑝[−7.88 + 0.94 ∗ ln (𝐴𝐴𝐷𝑇)] 

                                            
10 Lubliner et al (2014) stated that the number of animal crashes was significantly high in Kansas and it was difficult to determine where these 
crashes would occur. 

10 Not specified whether divided or not. 
 

10 This definition does not exist in the HSM – there are 5 segment categories for urban/suburban arterials in the manual 
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Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−10.36 + 1.09 ∗ ln (𝐴𝐴𝐷𝑇)] 

Property Damage Only,     n/a 

Tegge et al. (2010) Illionis 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝐿. 𝑒𝑥𝑝[−4.876 + 0.647 ∗ ln (𝐴𝐴𝐷𝑇)] 
 
Property Damage Only,     n/a 
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Donnell et al. (2014) Pennsylvania11 

Total Crashes,    𝑁 = 𝑒𝑥𝑝[−6.337 + 0.479 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.362. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) − 0.33. 𝐿𝑇𝑚𝑎𝑗𝑜𝑟 +

−0.507. 𝑅𝑇𝑚𝑎𝑗𝑜𝑟] 

Where, 𝐿𝑇𝑚𝑎𝑗𝑜𝑟is the presence of an exclusive left turn on major leg, and 𝑅𝑇𝑚𝑎𝑗𝑜𝑟 is the presence of an exclusive right turn 

on major leg. 

Sipple (2014) Idaho 

       𝑁 = 𝑒𝑥𝑝[−6.1502 + 0.0966 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.6969. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Sabbaghi (2010) Ontario, Canada 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−18.01 + 1.82 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.175. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

 

 

 

 

 

 

 

 

 

                                            
11 The definition of 3ST in Donnell et al. (2014) differs from the one included in the HSM. 3ST in the HSM has stop control on minor legs only. 3ST 
in this study has stop control on both approaches. However, in the following study by Donnell et al. (2016), this definition was reverted to the HSM 
standard with the same coefficients shown here. 
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12 

Donnell et al. (2014) Pennsylvania 

Total Crashes,     𝑁 = 𝑒𝑥𝑝[−6.813 + 0.451 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.349. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) + 0.02. 𝑆𝑚𝑎𝑗𝑜𝑟 −

0.433. 𝑊𝑚𝑎𝑗𝑜𝑟 − 0.345. 𝑊𝑚𝑖𝑛𝑜𝑟] 

Where, 𝑆𝑚𝑎𝑗𝑜𝑟is the posted speed limit on major leg, and 𝑊𝑚𝑎𝑗𝑜𝑟 and 𝑊𝑚𝑖𝑛𝑜𝑟 are the presence of a crosswalk on major 

and minor legs, respectively. 

Sipple (2014) Idaho 

       𝑁 = 𝑒𝑥𝑝[−8.6336 + 0.8966 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.0458. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

 

 

 

 

 

 

 

 

 

 

 

                                            
12 Currently not included in the HSM 
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Donnell et al. (2014) Pennsylvania 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−6.359 + 0.528 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.275. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) + 0.007. 𝜃] 

Where, 𝑆𝑚𝑎𝑗𝑜𝑟is the posted speed limit on major leg and 𝜃 is intersection skew angle. 

Sabbaghi (2010) Ontario, Canada 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−10.79 + 0.56 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.82. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 
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Donnell et al. (2014) Pennsylvania 

Total Crashes,     𝑁 = 𝑒𝑥𝑝[−5.353 + 0.313 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.25. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) + 0.025. 𝑆𝑚𝑎𝑗𝑜𝑟 +

0.014. 𝑆𝑚𝑖𝑛𝑜𝑟 + 0.216. 𝑅𝑇] 

Where, 𝑆𝑚𝑎𝑗𝑜𝑟and 𝑆𝑚𝑖𝑛𝑜𝑟 are posted speed limits on major and minor legs, respectively, and 𝑅𝑇 is the presence of 

exclusive right-turn lane on either major approach. 
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Donnell et al. (2016) Pennsylvania 

Total Crashes,       𝑁 = 𝑒𝑥𝑝[−8.072 + 0.509 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.509. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,      𝑁 = 𝑒𝑥𝑝[−7.830 + 0.459 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.459. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage,     n/a 
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Donnell et al. (2016) Pennsylvania 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−4.342 + 0.334 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.264. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes ,     𝑁 = 𝑒𝑥𝑝[−3.248 + 0.217 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.152. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage,     n/a 
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Donnell et al. (2016) Pennsylvania 

Total Crashes,       𝑁 = 𝑒𝑥𝑝[−3.563 + 0.389 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.134. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,      𝑁 = 𝑒𝑥𝑝[−3.301 + 0.291 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.133. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage,     n/a 
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Garber and Rivera (2010) Virginia 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−5.4696 + 0.4874 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.1985. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−7.4642 + 0.5791 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.2091. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Savalainen et al. (2015) Michigan 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−11.89 + 0.75 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.42. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    𝑁 = 𝑒𝑥𝑝[−13.06 + 0.99 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.46. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Persaud et al. (2009) Colorado13 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−10.6568 + 0.8999 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.3019. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−11.6429 + 0.7689 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.8642. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Xie and Chen (2016) Massaschusettes 

Total Crashes (Multiple Vehicles),   𝑁 = 𝑒𝑥𝑝[−20.02 + 1.66 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.54. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 

 

                                            
13 This model was specific to urban four-lane divided road intersections 
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Garber and Rivera (2010) Virginia  

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−6.0723 + 0.4558 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.347. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−7.6917 + 0.5001 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.3695. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Savalainen et al. (2015) Michigan 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−9.21 + 0.56 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.38. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    𝑁 = 𝑒𝑥𝑝[−7.94 + 0.50 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.43. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Persaud et al. (2009) Colorado14 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−13.481 + 0.981 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.6658. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−14.0091 + 0.7689 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.8512. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Xie and Chen (2016) Massachusetts 

Total Crashes (Multiple Vehicles),   𝑁 = 𝑒𝑥𝑝[−8.70 + 0.31 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.86. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 

 

 

                                            
14 This model was specific to urban two-lane undivided road intersections 
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Garber and Rivera (2010) Virginia  

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−6.543 + 0.6591 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.2119. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−8.4268 + 0.7147 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.2481. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Savalainen et al. (2015) Michigan 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−5.35 + 0.43 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.13. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    𝑁 = 𝑒𝑥𝑝[−5.96 + 0.57 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.19. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Persaud et al. (2009) Colorado15 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−10.552 + 0.7596 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.5425. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−11.0639 + 0.7215 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.5027. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Persaud et al. (2012) Toronto, Canada 

Total Crashes (Multi-vehicle),   𝑁 = 𝑒𝑥𝑝[−6.60248 + 0.6177 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.3874. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 

 

Xie and Chen (2016) Massachusetts 

                                            
15 This model was specific to urban four-lane divided road intersections 
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Total Crashes (Multiple Vehicles),   𝑁 = 𝑒𝑥𝑝[−8.30 + 0.81 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.21. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 
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Garber and Rivera (2010) Virginia     

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−7.6234 + 0.6742 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.3453. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−8.5256 + 0.6477 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.3579. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    n/a 

Savalainen et al. (2015) Michigan 

Total Crashes,      n/a 

Fatal/Injury Crashes,     𝑁 = 𝑒𝑥𝑝[−7.90 + 0.71 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.17. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Property Damage Only,    𝑁 = 𝑒𝑥𝑝[−8.44 + 0.80 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.26. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Persaud et al. (2009) Colorado16 

Total Crashes,      𝑁 = 𝑒𝑥𝑝[−17.4479 + 1.5811 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) − 0.2585. 𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟/10000] 

Fatal/Injury Crashes,   𝑁 = 𝑒𝑥𝑝[−20.6848 + 1.8508 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.4547. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) − 0.3743. 𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟/

10000] 

Property Damage Only,    n/a 

Persaud et al. (2012) Toronto, Canada 

Total Crashes (Multi-vehicle),   𝑁 = 𝑒𝑥𝑝[−7.48131 + 0.5661 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.5581. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 

 

                                            
16 This model was specific to urban four-lane divided road intersections 
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Xie and Chen (2016) Massachusetts 

Total Crashes (Multiple Vehicles),   𝑁 = 𝑒𝑥𝑝[−11.79 + 0.92 ∗ ln(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟) + 0.52. ln(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟)] 

Fatal/Injury Crashes,     n/a 

Property Damage Only,    n/a 

 

 

 

 

 

 

 

 

 

 

 


