

EVALUATION OF PRECAST CONCRETE PAVEMENT SYSTEMS, PHASE I: Identify Existing Precast Concrete Pavement Systems and State Specifications

Lunchtime Tech Talk! 12:00-1:15 PM

Presented by:

Yusuf Mehta, PhD, Director

Dan Offenbacker, PhD, Research Associate

Center for Research and Education in Advanced Transportation Engineering Systems (CREATEs) at Rowan University

Acknowledgments

- Rowan University
 - Doug Cleary, PhD
 - Ayman Ali, PhD
 - Gilson Lomboy, PhD
- <u>NJDOT</u>
 - Robert Blight
 - Giri Venkiteela, PhD
 - Kimbrali Davis

- <u>State DOTs</u>
 - California
 - Illinois
 - Delaware
 - Texas
 - Utah
 - Wisconsin

New York

lowa

New Jersey Department of Transportation

In This Presentation...

- Background of Precast Concrete
 Pavements
- Research Goal & Objectives
- Literature Review of Available Precast
 Systems
- SHA Experience with Precast Systems
- Proposed Precast System Approval Process

Conclusions & Recommendations

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Background of Precast Concrete Pavements

- Precast concrete pavements (PCPs) have emerged as a PCC rehabilitation technique
 - -Cast and cured offsite
 - -Shipped to deteriorated pavement jobsite
 - -Aligned and leveled to existing pavement
 - -Grouted and secured into place

¹Tayabji, S., Ye, D., and Buch, N., 2013. SHRP 2 Report S2-R05-RR-1: Precast Concrete Pavement Technology.

ODI1 Need a picture Offenbacker, Daniel Irving, 5/28/2020

Background

- Benefits of PCP:
 - Quick installation (can be installed and open to traffic overnight)
 - Durable and Long-Lasting
 - Minimal interaction with drives
- Drawbacks of PCP:
 - Expensive
 - Challenging to install
 - Poor installation → Premature cracking
 - Contractors and systems must be capable

¹Tayabji, S., Ye, D., and Buch, N., 2013. SHRP 2 Report S2-R05-RR-1: Precast Concrete Pavement Technology.

Background

- NJDOT has allowed the use of one PCP system
- This PCP system was selected because of:
 - Proven performance
 - Adequate installation practices
- Since then, however:
 - 1. New PCP systems have been developed and/or implemented
 - 2. Other state DOTs have been opened to multiple options in PCP systems

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Research Goal and Objectives

New Jersey Department of Transportation

Research Goal

Gain a greater understanding of the existing systems, components, and specifications pertaining to precast pavement systems.

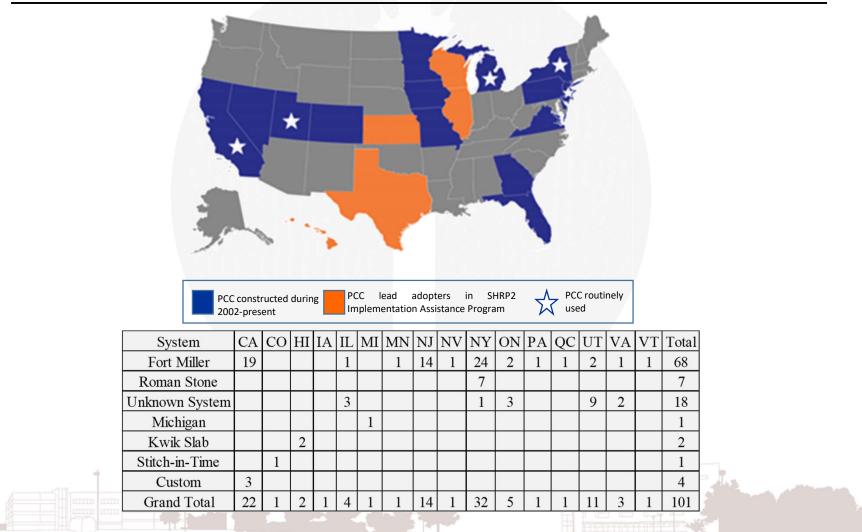
Research Objectives

- Evaluate literature pertaining to existing PCP systems in the US
- Identify components of PCP systems and their differences
- Contact state DOTs regarding their past experience, practices, and recommendations with PCP
- Synthesize existing state DOT specifications for PCP systems to develop preliminary NJDOT

specifications

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Literature Review of Available Precast Systems


Literature Review of PCP Systems

- Very little literature exists pertaining to PCP systems (outside of FHWA)
- 8-10 primary research studies conducted on PCP over the past 10-15 years
 - 85-90% conducted by FHWA
 - 5-10% conducted by Academia/Industry
 - 5% conducted by DoD

Distributions of Precast Systems

¹Tayabji, S., Ye, D., and Buch, N., 2013. SHRP 2 Report S2-R05-RR-1: Precast Concrete Pavement Technology.

Overview of Precast Systems

State	Proprietary	Nonproprietary	Notes							
CA	Bottom-Slot Jointed	-								
CO	Stit		arketed							
HI	Interloo Approximately 11									
IL	different PCP systems									
IA	were identified from									
MI	jonger used									
NJ	literature search									
NY	Bons		-							
TX	-	P	-							
UT	Bottom-Slot Jointed	Utah DOT	Utah DOT System no longer							
	System		used							
	, Ye, D., and Buch, N., 2013. <i>SHRP 2 Rep</i> I8a. Jointed Precast Concrete Pavement V		rom onger used - P - Utah DOT System no longer used Concrete Pavement Technology.							

³Buch, N., 2007. Precast Concrete Panel Systems for Full-Depth Pavement Repairs. Field Trials.

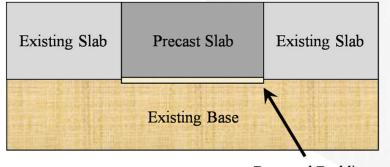
CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

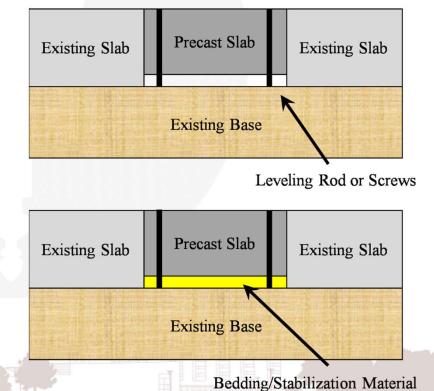
Common Precast System Components

Literature Review of PCP Systems

- Overview for PCP systems were also documented
- Critical differences among PCP systems:
 - Bedding and Support Options
 - Load Transfer System

⁴Tayabji, S. and Brink, W., 2015. Load Transfer Systems for Jointed Precast Concrete Pavements. ⁵Tayabji, S., 2016. Precast Concrete Pavement Practices—Generic System Use In Michigan, Texas & California.




New Jersey Department of Transportation

Bedding System

- Two primary bedding/leveling systems:
 - -Grade-Controlled
 - -Lifted and Grouted

Prepared Bedding (Granular or Flowable Fill)

⁶Tayabji, S., 2016. Precast Concrete Pavement Practices Overview.

Load Transfer System

- Different systems exist to transfer traffic load and minimize damage
- Four major load transfer systems:
 - 1. Bottom-slot dowel (*Proprietary*)
 - 2. Partial retrofit with narrow-mouth dowel
 - 3. Full retrofit dowels
 - 4. Sliding dowel systems

Load Transfer System

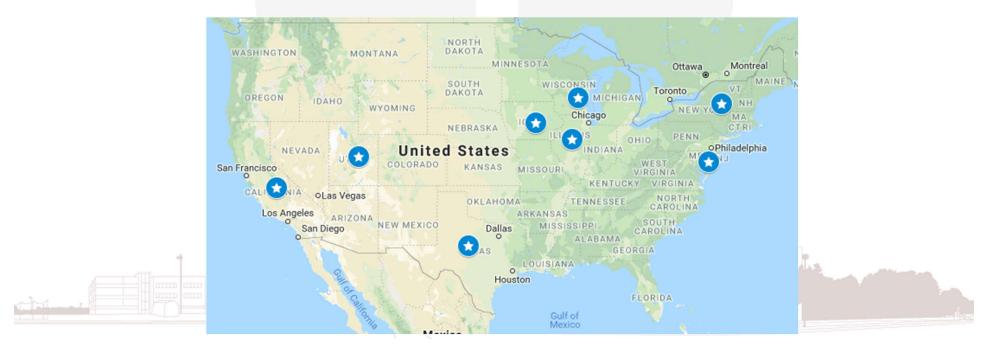
Bottom-Slot Dowel⁷

Full Dowel Bar Retrofit⁴

Partial Dowel Bar Retrofit¹

Sliding Dowel⁴

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS



SHA Experience with Precast Systems

- Several states were contacted regarding their use of precast pavement systems (~17 states)
- 8 DOTs had follow-up phone interviews to discuss PCP experiences:

The following topics were discussed in the survey:

- 1. Current PCP systems and components commonly being used in their respective state
- 2. State standards on the manufacture and installation of precast pavement
- 3. Procedures for permitting new PCP systems
- 4. Experiences and challenges observed with PCP installation and performance

SHA Survey Results

1. Current PCP systems and components commonly being used in their respective state:

- Not all precast systems are still in use/available for PCC roadways
- Based on contact with SHAs, the current precast systems available are:

Proprietary systems: Jersey Precast and Fort Miller Super Slab[©]

Non-proprietary systems: Roman Road, Illinois Tollway, and California Rapid Roadway

SHA Survey Results

2. State standards on the manufacture and installation of precast pavement:

- Several specifications existed (based on FHWA)
 - 8 different state specifications were identified
- Four major parts of PCP systems and installation were controlled by specification
 - 1. Precast Panel Fabrication
 - 2. Bedding/Grout Stabilization
 - 3. Installation Tolerances
 - 4. Encasement Grout

preference

SHA Survey Results

3. Procedures for permitting new PCP systems:

- Most states follow a performance-based approval process
 - -Provide evidence of adequate historical performance
- If unavailable, field demonstration is warranted
- Field demonstation consists of three step

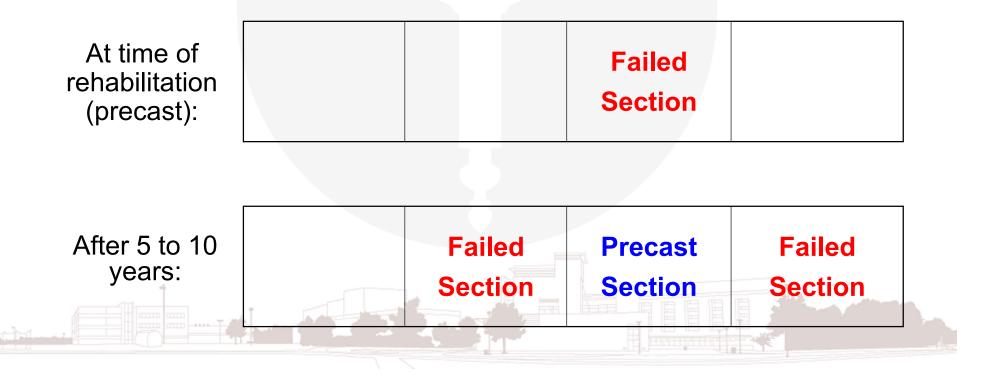
-Optional fourth step depending on agency

SHA Survey Results

3. Procedures for permitting new PCP systems:

- 1. Show ability to install PCP without damaging PCP system or surrounding pavement
- 2. Must be able to install PCP within a given amount of time
- Performance test: LTE > 70% and deflection < 2 mils
- 4. Exposure to traffic for given amount of time
- 7 out of 8 state DOTs that held phone call interviews
 have implemented similar program

<u>4. Experiences and challenges observed with PCP</u> installation and performance:


- Survey highlighted experiences with PCP that are not well documented
- Installation is critical to the performance of PCP
 - -Poor leveling or misalignment \rightarrow Premature failure
 - -Shims are not recommended
 - -Leveling bolts have shown to improve efficiency

<u>4. Experiences and challenges observed with PCP</u> installation and performance:

 Precast systems are usually replaced due to surrounding PCC pavement failure

<u>4. Experiences and challenges observed with PCP</u> installation and performance:

 Leveling Bolts and Sliding Dowels provide the greatest installation efficiency

-One State DOT Case:

- <u>Before:</u> ~20 slabs installed in an overnight work window (~8 hours, mixed cont. and non-cont.)
- <u>After:</u> ~32 slabs installed in an overnight work window (~8 hours, mixed cont. and non-cont.)
- -Efficiency increased by 65%

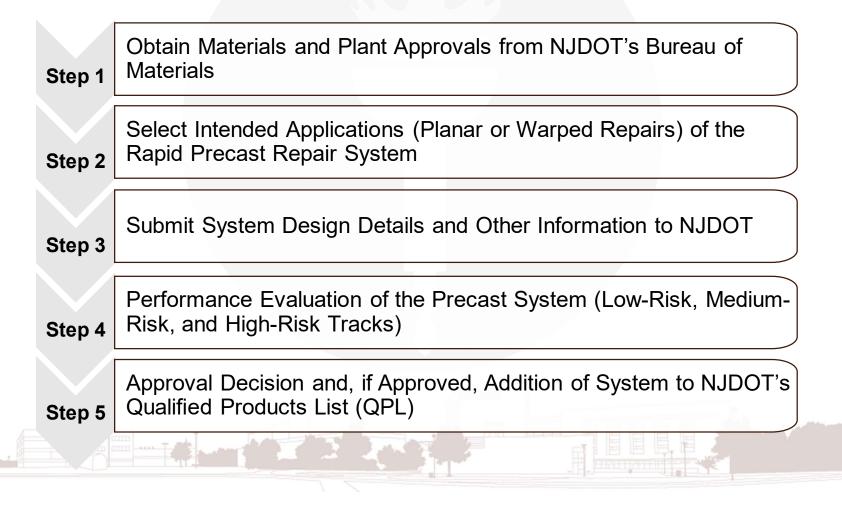
-Costs decreased by ~60%

<u>4. Experiences and challenges observed with PCP</u> installation and performance:

- One state recommended flexible specifications to allow for Contractors to select their preferred PCP system
 - -Minimize installation error and premature failure
 - -Improve installation efficiency
 - -Requires thorough understanding of the different PCP system components and their performance

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Proposed System Approval for Precast Pavement in NJ



- Draft specifications for approval of precast pavement systems in NJ
- Specifications needed to be applicable for (i) currently existing and (ii) newly developed systems
- The approval system contained 3 major parts:
 - 1. Materials and slab fabrication approval
 - 2. Demonstration of system installation
 - 3. Proof of performance

5-Step PCP Approval Process

Step 1. Materials and Slab Fabrication Approval

- All precast pavement slabs must use approved NJDOT materials and precast plants
 - -Currently specified in NJDOT specifications
 - -Remain similar to current NJDOT precast items
- Fabrication tolerances determined by the state DOT review and NJDOT preference

	State									
Dimensional Tolerances	DE	СА	NY	WI	UT	IL	SHRP	ТΧ		
Length and Width	±1/4"	L: ±1/4 W:±1/8		±3/8"	+/- 1/4"	+/- 1/8"	±1/4"	±1/4"		
Nominal Thickness	±1/8"	±1/8"			-1/8", +3/16"		±1/16"	±1/4"		
Squareness	±3/16"				+/- 1/4"	+/- 1/8"	±1/4"	±1/8"		
Horizontal Alignment	±1/4"							±1/8"		
Deviation from straightness of mating edge of panels Vertical Alignment:	±1/8"	1/8"	±1/8"	±1/8"				±1/8"		
Position of lifting anchors (horizontal location)	±6.0"				+/- 1"		±1/2	±3"		
Position of non-prestressed reinforcement (horizontal and vertical)	±1/2"						±1/2"	±1/4"		
Position of pre-tensioned strands	±1/4"	1/8"					±1/4"	±1/4"		
Position of dowel bar inserts	±1/4"		2		+/- 1/4"					
Dimensions of block outs and grout pockets	±1/4"							±1/4"		
Panel Strength Requirements										
Stripping Strength (psi)				3000			2500			
Shipping Strength (psi)		-					4000	a state and the second s		
28 day compressive strength (psi)		2.00	4500	5000	HEE	4500	4500			
28 day Flexural Strength (psi)			-T		650		650			

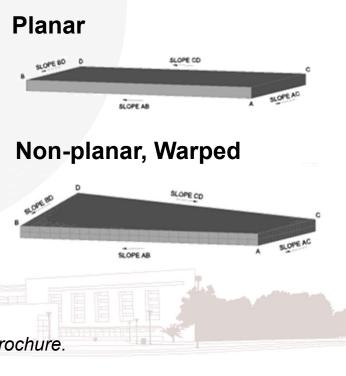
Step 1. Materials and Slab Fabrication Approval

Precast Panel Dimensional Tolerances

Panel Feature	Tolerance				
Length and width	±1/4 in.				
Thickness	± 1/16 in.				
Squareness of corner in plan view	±1/4 in. over 12 in.				
Squareness of sides in section	±1/4 in. over the				
view	thickness				
Local smoothness of any	±1/4 in. over 10 ft				
surface	in any direction				
Vertical location of reinforcement	±1/2 in.				
Vertical location of pretensioning strand	±1/4 in.				
Blockout dimensions (if applicable)	±1/4 in.				
Location of lifting inserts	±1/2 in.				

RE Visual Inspection

- Dimensional tolerances;
- Surface defects;
- Improper surface texture;
- Damage to the concrete;
- Embedded dowel bar and tie bar alignment, if applicable; and
- Pretensioning based on strand elongation

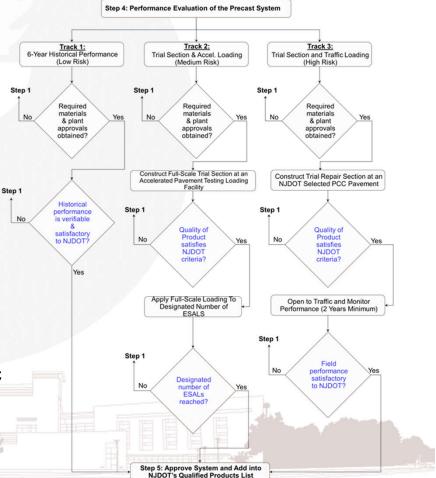


Step 2 & 3. Select Intended Use of PCP and Submit System Details

- All PCP systems can be used in different conditions and this needs to be identified
 - Continuous vs. Non-Continuous
 - Planar vs . Non-Planar
- Submit details regarding:
 - 1. Load transfer system
 - 2. Bedding stabilization
 - 3. Overall installation process

⁷The Fort Miller Company Inc., 2015. Super-Slab Precast Pavement Brochure.

Step 4. Demonstration of PCP installation and performance


- Ensures two important aspects of PCP
 - 1. Can be installed efficiently and properly
 - 2. Will withstand adequate traffic loading and durability
- Three different evaluation paths were developed based on risk level to NJDOT (low, medium, and high)

Step 4. Demonstration of PCP installation and performance

- <u>Track 1:</u> 6-Year Historical Performance
 - Low-risk; Proven performance under live traffic
- <u>Track 2:</u> Trial Section & APT Study
 - Medium-Risk; Proves durability under traffic loads, but not exposed to live traffic or harsh environments
- <u>Track 3:</u> Trial Section & Field Study
 - High-Risk; Proves durability under live traffic loads, but exposes general public to an unproven system

Step 4. Demonstration of PCP installation and performance

- Track 2 or 3 selected: Evaluated based on:
 - Successful installation to tolerances (determined from SHA review)
 - LTE must be greater than 70% and deflections less than 2 mils
 - Adequate durability (no visual distresses) over given time
- Any failure would deem the system unapproved

Dimensional Tolerances	State							
	DE	CA	NY	WI	UT	IL	SHRP	ТХ
Transverse Joints								
Horizontal Alignment	±1/2"	$\pm 1/8"$	$\pm 3/8"$	±3/4"	$\pm 3/8"$	±1/2"	$\pm 1/8"$	$\pm 1/8$
Vertical Alignment	±1/4"	$\pm 1/4"$	±1/4"	$\pm 3/8"$	$\pm 3/8"$	±1/4"	±1/4"	$\pm 1/4$
Longitudinal Joints								
Horizontal Alignment	±1/2"	±1/4"	$\pm 3/8"$	±3/4"	$\pm 3/8"$	±1/2"	±1/4"	±1/4
Vertical Alignment	$\pm 1/2"$	$\pm 1/4"$	±1/4"	$\pm 3/8"$	$\pm 3/8"$	±1/4"	$\pm 1/4"$	$\pm 1/4'$
	Alignment		To	Tolerance (inches)				
	T		Horizontal		$\pm 1/8"$			
	Transverse Joints	V	ertical	±1/4"				
	Longitudin	al Iairta	Horizontal	±1/4"				
+	Longitudinal Joints		V	ertical	±1/4"			
		1						

Step 5. Submission of performance data and approval decision by NJDOT

- All documentation is provided to the NJDOT including (i) materials, (ii) PCP system components, and (iii) performance data
- NJDOT provides final approval of the PCP system and components
 - Add the PCP system to an approved QPL

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Conclusions and Recommendations

New Jersey Department of Transportation

Conclusions

Several precast systems exist in NJ

-Both proprietary and non-proprietary

- PCP systems differ in two major areas:
 - Bedding Stabilization
 - Load Transfer System
- Slab installation is the most critical factor in precast concrete pavement performance

New Jersey Department of Transportation

Conclusions

- Most SHAs require:
 - -Quality control measures on 4 different PCP areas
 - Precast slab fabrication process
 - Bedding/Stabilization material
 - Installation
 - Encasement Grout
 - -Performance-based approval process
 - Adequacy in precast installation
 - Achieve an acceptable Load Transfer Efficiency (LTE)

State Agency Recommendations

- Use the documented experiences and state practices as guidelines for future specifications
 - -Leveling bolts are recommended for leveling precast systems
 - -LTE of at least 70% and deflection less than 2 mils
- Explore the development of a generic PCP system that suits state needs

New Jersey Department of Transportation

Future Work

- Investigate long-term performance of precast systems
- Identify economic benefits of using precast pavements (user costs, longer durability, etc.)
- Assess the usefulness of intermittent precast systems
- Adequate training and experience for contractors are critical to ensure proper installation

References

- Tayabji, S., Ye, D., and Buch, N., 2013. SHRP 2 Report S2-R05-RR-1: Precast Concrete Pavement Technology. Transportation Research Board.
- NPCA, 2018. Jointed Precast Concrete Pavement Web Explorer [online]. Available from: https://precast.org/precast-products/pavementexplorer/ [Accessed 21 Mar 2018].
- 3. Buch, N., 2007. Precast Concrete Panel Systems for Full-Depth Pavement Repairs. Field Trials.
- 4. Tayabji, S. and Brink, W., 2015. Load Transfer Systems for Jointed Precast Concrete Pavements.
- 5. Tayabji, S., 2016. Precast Concrete Pavement Practices—Generic System Use In Michigan, Texas & California.
- 6. Tayabji, S., 2016. Precast Concrete Pavement Practices Overview
- 7. The Fort Miller Company Inc., 2015. Super-Slab Precast Pavement Brochure.

A DE DE NEW JUST

Dan Offenbacker, Ph.D. Research Associate, Center for Research and Education in Advanced Transportation Engineering Systems (CREATEs) Rowan University Glassboro, NJ 08028 E-mail: <u>offenbacker@rowan.edu</u> Phone: (856) 449-3313 Yusuf Mehta, Ph.D., P.E. Director, Center for Research and Education in Advanced Transportation Engineering Systems (CREATEs) Rowan University Glassboro, NJ 08028 E-mail: mehta@rowan.edu

www.rowan.edu/creates