

DIVISION OF TRANSPORTATION MOBILITY

Jeff Rockower Ridwan Ahmed

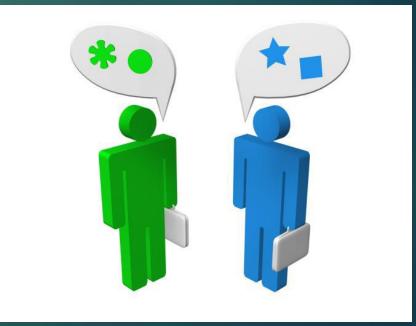
TRB & the future of transportation

TRANSPORTATION MOBILITY JEFF ROCKOWER RIDWAN AHMED

TRB 2020 – Sessions Attended

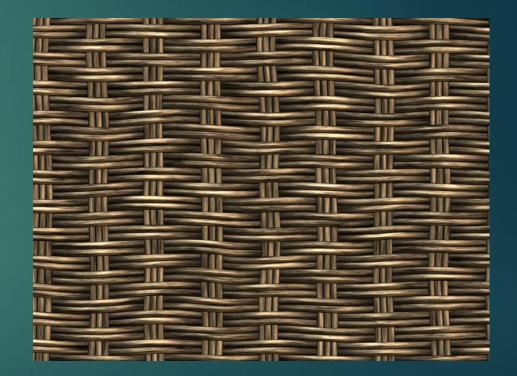
- 1. 1022 Evolution of Project Delivery Information Systems: Where We Were and Where We Are Headed
- 2. 1051 Data Governance Issues for Transportation Agencies
- 3. 1097 Blockchain: Opportunities and Challenges for the Transport Sector
- 4. 1163 Chief Information Officers Roundtable: The Pressing Issues and Concerns from Our Leaders
- 5. Task Force on Data Privacy, Security, and Protection Policy
- 6. 1314 Best Practices for Handling and Responding Before, During, and After a Cyber Attack or Data Breach
- 7. Cyber Security Subcommittee, ABR10(7)
- 8. 1455 Using Artificial Intelligence to Unlock the Hidden Value of Asset Management Data: Transforming Data into Advanced Decision Making
- 9. 1582 Evaluations and Applications of Emerging Crowdsourced Data Sets
- 10. 1663 Mainstreaming Resiliency: Physical Security Faces New Challenges
- 11. 1707 Keeping Our Nation's Transportation Assets Secure from Cyber Attacks
- 12. 1739 Digital Asset or Digital Liability
- 13. 1741 Data Governance Is a Journey, Not a Destination
- 14. 1770 Research Data Management for State DOTs

Best (and worst) practices in data governance. JEFF ROCKOWER


Data Governance is a discipline that provides clear-cut policies; procedures; standards; roles; responsibilities; and accountabilities to ensure that data is well-managed as an enterprise resource. —from the DGPO Data Governance Glossary

- "Data Governance is a system of decision rights and accountabilities for information-related processes, executed according to agreed-upon models which describe who can take what actions with what information, and when, under what circumstances, using what methods." — from the Data Governance Institute
- When you refer to governance, be careful! Depending on the context, "Data Governance" could refer to:
 - organizational bodies
 - rules (policies, standards, guidelines, business rules)
 - decision rights (how we "decide how to decide")
 - accountabilities
 - enforcement methods for people and information systems as they perform information related processes.

Necessities of Good Data Governance


▶ 1.) You need to develop your own definition of Data Governance.

- It's Meaning
- It's Purpose
- It's Value to the Organization

Necessities of Good Data Governance

- 2.) You need to develop a strategic and tactical plan that not only considers conventional components but:
 - Organizational Culture
 - Organizational Structure
 - Organizational Readiness
 - Organizational Decision Making
- Data Governance needs to be woven into the organization

Necessities of Good Data Governance

- 3.) You need to realize that Data Governance is a Journey:
 - Technology rapidly changing(ML & AI)
 - Data in motion vs. Data at rest
 - Changing role of organization
 - "Construction Co." vs. "Mobility Maximizer"
 - Identity

- Data Governance Prescribed to Distributed to Emergent
- ► 3rd Party Data

Necessities of Good Data Governance

- 4.) You need to be adequately resourced/supported to succeed
 - Given the complexity and long term effort, dedicated staff must be assigned
 - Can't continue to load someone's plate
 - Executive sponsorship/involvement necessary as barriers are encountered or to reinforce guiding Principles.

Necessities of Good Data Governance

- 5.) You need to be Collaborative and have Good Communication Skills
 - First and foremost, this is an enterprise activity
 - No one individual has the ability to see the complete "whole"
 - The vision for data governance needs to be Communicated in a clear, compelling way

Data Governance is not an end in itself. It is not only about allowing us to integrate data, but integrating the organization. It also is a powerful force that can align your organization to its mission and vision. One in which you can truly engage your workforce to help create a successful future.

TRB 2020 - Sessions Attended : Ridwan Ahmed

- 1. Autonomous Vehicles and Travel Behavior- 1101
- 2. Evaluation of Signs and Markings Based on User Needs 1191
- 3. Traffic Control Devices Challenge: Connected and Autonomous Innovations for Improving Work Zone Safety—Hybrid Session 1252
- 4. Technology Assisting to Make Better Work Zones -1309
- 5. Speed Feedback Signs, Curve Warning Treatments, and the History/Future of Traffic Control Devices -1388
- 6. Public Transit Innovation: Past, Present, and Future -1466
- 7. Autonomous Vehicle and Unmanned Aerial Systems Education and Training: The Future Is Now -1511
- 8. Information and Communications Technologies and the Evolution of Travel Choices 1584
- 9. Driving and the Technology of Weather -1672
- 10. Highway Safety Performance Research-1721

Public Transit Innovation: Past, Present, and Future -1466

The Evolution of Transit

Regional Transportation Commission (RTC), Southern Nevada

Objective:

A crash prevention pilot program along a key corridor of Interstate 15 in Las Vegas, Nevada

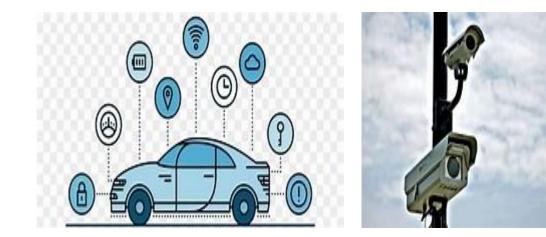
Involved Agencies:

The pilot was led by Waycare, an AI-driven mobility solutions provider, in partnership with the Regional Transportation Commission of Southern Nevada (RTC), Nevada Highway Patrol (NHP) and the Nevada Department of Transportation (NDOT).

waycare

<u>Goals:</u>

- Connect People
- Congestion Capacity & Safety
- Data Driven Solutions



Data Sources:

Waycare system uses data from

- Connected cars
- Road cameras
- Apps like Waze
- Social Media
- Historical Data

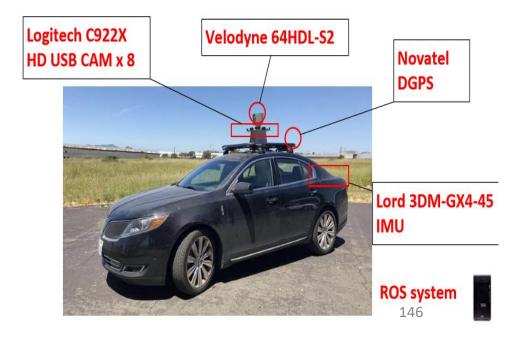
Benefits:

- Number of primary crashes reduced by 17 percent along the Interstate 15 Las Vegas.
- Predictive analytics, gave the city's safety and traffic management agencies the ability to take preventative measures in high risk areas.
- Preventative measures were deployed 91 percent of drivers reduced their speed to below 65 MPH
- Waycare has been providing traffic agencies with alerts detailing when and where it predicts an
 accident is likely to take place. RTC then uses a message board system to deliver alerts to drivers,
 advising them to reduce their speed and drive with extra caution.
- 12 minutes average faster response time by law enforcement

Evaluation of Signs and Markings Based on User Needs – 1191

Freeway Traffic Sign Design for Interstate 80 Smart Corridor in California: A Driving Simulator Study

California PATH, UC Berkeley


Background:

- The Interstate 80 Smart Corridor under this study
- Caltrans installed Information Display Boards (IDBs) at six strategic decision points along the corridor
- Display innovative concepts of signs

Method of the Simulator Testing:

- Collect video data on I-80 corridor using instrumented car
- Replace IDB signs in the video with the IDB designs to be evaluated.

Traffic Sign Categories and Design Factors:

580 880 10 MIN 101 25 MIN 92 via 880 35 MIN HILLTOP 35 MIN HILLTOP 92 via 880	RICHMOND STATION TO: OAK-12TH 15MIN FRMT 60MIN OBART BERKELEY - SF
Message Categories	Design Factors
1. Travel time and up to six lines messages	 Number of lines of messages
2. Transit travel time messages	 Transit logo vs. Text only Symbols for BART
3. Single-link GRIP	 Orientation: top-bottom vs. bottom-top With or without roadwork legend Number of destinations

Testing procedure:

- Provide participants with one destination before each trip.
- Randomly displayed one sign in each trip.
- Participants control the speed of the simulator.

Subjective questions :

After completing each trip, the following questions were asked about each sign.

- What is the sign about?
- Detailed information about the destination.
- Is it easy or difficult for you to understand the sign? (rating scale: 1-5)

Findings:

- *****Up to six lines messages
- Five or six lines of messages were significantly harder to understand comparing with the 3-line travel time message.
- Transit travel time messages
- Transit logos were preferred.
- It was hard to understand the origin of the transit travel time.
- Likely to think the time is "driving to the station" because of seeing the sign while driving on freeway.
- Single link GRIP
- Bottom-top orientation was mostly preferred.
- Legend helped to understand the traffic, but also made the sign busy and more likely to be perceived inaccurately.
- Single link GRIPs with four destinations were more likely to be perceived inaccurately comparing with single link GRIPs with three destinations.

Traffic Control Devices Challenge: Connected and Autonomous Innovations for Improving Work Zone Safety-Hybrid Session –1252

"Connected" Temporary Traffic Control Devices

Oregon State University

Introduction:

Work zones present a unique challenge in transportation safety because they disrupt standard traffic flow through an area.

According to Bai and Li (2007):

• Over half of fatal work zone crashes were due to driver inattention

According to National Work Zone Safety Information Clearinghouse:

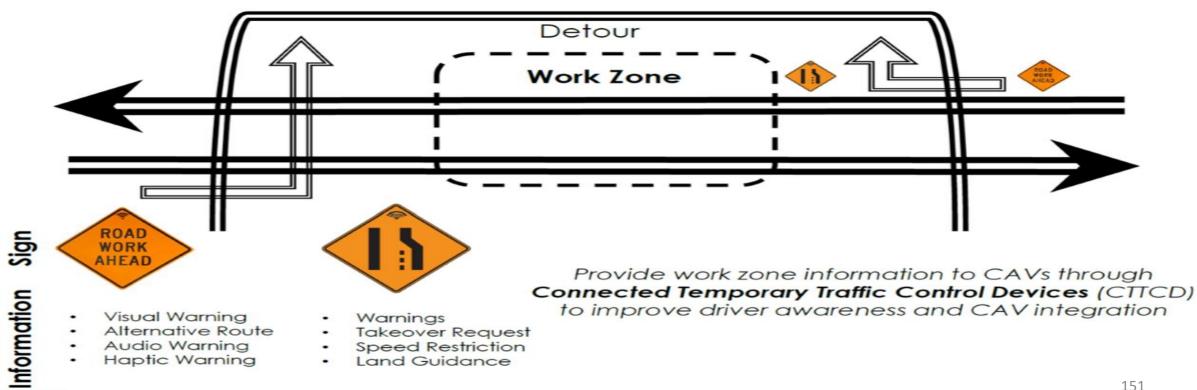
- 94,000 work zone crashes in the United States in 2017
 - 25,000 injury only
 - 710 fatality

Causes of work zone crashes:

92% of work zone crashes are from human error (University of Kansas)

- 52% inattentive driving
- 25% speeding
- 15% other human errors

8% - non-human error


Solution:

The connected capability of the "Connected" Temporary Traffic Control Device ("C"-TTCD) facilitated using Dedicated Short-Range Communications (DSRC) technology. A modified MUTCD sign that utilizes DSRC via a Roadside Unit to

- Push upcoming road work conditions to CAVs
- Alert the driver, as well as the vehicle, to make a change in driving behavior or navigation
- Increases Attention
- **Reduces Speed** •

W20-1 (w/ WIFI symbol)

Feasibility/ Applicability:

Connected" Temporary Traffic Control Device ("C"-TTCD) are feasible and applicable for deployment in the near and long term because:

- "C"-TTCDs are resilient to various weather conditions, roadway types, and environments.
- The "C"-TTCD concept is easily transferable to other roadway projects
- Alterations to legal MUTCD sign deifications should cause no difference in understanding for non-CAV vehicles.