INFLUENCE OF CRACKING AND CHLORIDE CONCENTRATION ON CORROSION TESTING

Aaron J. Strand, Matthew P. Adams, Matthew J. Bandelt

J.A. Reif, Jr., Department of Civil and Environmental Engineering New Jersey Institute of Technology

21st Annual NJDOT Research Showcase Innovation Breakout Session #2 Conference Center at Mercer 23rd October 2019

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Conclusions

CORROSION OF CONCRETE STRUCTURES

- 2002 Study: Corrosion cost and preventative strategies for highway bridges was \$8.3 Billion
- In reinforced concrete bridges primary cause is chloride-induced corrosion

Simplified deterioration mechanism (Aboutaha, 2004)

CAUSES OF CORROSION OF STEEL IN CONCRETE

Source: Design Guide for Bridges for Service Life 2014

- 2014 road consumption
 24.5 million metric tons
- Forms of salt used
 Rock Salt
 - $_{\odot}\,$ Brine (23.3% for -6°F freezing)
- NJDOT Winter 2018-2019 Material Usage
 - Salt 391,447 tons
 - Liquid calcium chloride 803,709 gallons
 - \circ Brine 687,370 gallons

Salt Consumption in the United States, 1940-2014

materials and structures

Sources: Winter Readiness, *NJDOT*; Minerals Yearbook 2014 Salt, *U.S. Geological Survey*; Special Report 235: Highway Deicing, *National Research Council*

5

MACROCELL CORROSION

- Local anode and large cathode
- Frequently occurs in chloride induced corrosion
- In bridge decks this form is accelerated due to large cathode/anode area ratio
- Macrocell forms between upper layer reinforcement and lower mat

Chloride Ingress

Diffusion

- Chlorides need to penetrate concrete to reach reinforcement
- $_{\odot}$ Concentration gradient

Direct access

 Chlorides have concentrated path to reinforcement

Sources of Bridge Deck Cracking

- Plastic Shrinkage
- Drying Shrinkage
- Surface Tears (Finishing)
- Flexure/Deflection of the Deck
- Reflection of Underlying Cracks and Joints
- Temperature Related Mechanisms

GOVERNING QUESTION

- Does current testing take into account possible real world considerations?
- Amount of salt placed on roads
- Salt placement cycles
- Integrity/condition of bridge deck

Image Sources: Indiana Department of Transportation, and theconstructor.org

9

VARIABLES OF INTEREST

Impact of salt brine concentration

How does the concentration
 of the chloride brine impact
 the time to corrosion?

Impact of cracking

 How does the presence of cracks to the reinforcing steel impact the time to corrosion?

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Conclusions

SPECIMENS FOR TESTING

- ASTM G109 for macro-cell current

 Assumed no initial chlorides in concrete
 Corrosion only from chloride ingress
- Design compressive strength of 4500 psi
- Tested compressive strength:

 Set 1 Specimens 5620 psi
 Set 2 Specimens 6660 psi

CHLORIDE PONDING SPECIMEN DIMENSIONS

Dimensions are in accordance with ASTM G109

MATERIAL SPECIMEN CONDITIONS

- Five brine solutions were used
 - $\,\circ\,$ 1.5% NaCl solution
 - 3.0% NaCl solution (specified in ASTM G109)
 - o 4.5% NaCl solution
 - \circ 6.0% NaCl solution
 - \circ 9.0% NaCl solution
- Pre-cracking per salt level
 - $\,\circ\,$ One uncracked specimen
 - $_{\odot}$ One flexure pre-cracked specimen

Source: indiamart.com, FHWA-RD-03-047

LOADING SPECIMENS TO FORM CRACK

- Single Point load
 Load at midspan
- Loaded until 14.5 kips (Cracking moment of 2.75 k-ft)
 - Stopped if deformation but no additional load was observed (Crack has formed)
 - $_{\odot}$ Loaded at 5000 lb./min

15

PHOTOS OF CRACKED SPECIMENS

16

CRACK WIDTH

Crack Width Range

 0.004 - 0.012 in.
 0.15 - 0.30 mm

MATERIAL SPECIMEN PROCEDURE

- Curing regimen after casting
 - $_{\odot}$ 28 days at >95% RH
 - $_{\odot}$ 28 days at 50 ± 5% RH
 - $_{\odot}$ Start of ponding cycles
 - $\,\circ\,$ 14 days w/salt solution
 - $\,\circ\,$ 14 days w/o salt solution
 - \circ Repeat ponding cycles

DATA COLLECTION TIMING

- ASTM G109
 - $\,\circ\,$ Every month, one week into ponding
- This project
 - Every third day and on biweekly salt solution addition or removal

MATERIAL SPECIMEN TESTING

- Measure voltage across resistor and calculate macrocell current
 - A macrocell current value above 10 µA is indication of chlorides reaching reinforcement steel (from ASTM G109)

 $I_j = V_j/100$

 I_j is macrocell current, V_j is measured voltage across 100 Ω resistor in volts

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

ONE CYCLE MACROCELL CURRENT RESULTS

Set 1 Ponding Cycle 5											Set 2 Ponding Cycle 5			
Time of Exposure	1.50%		3.00%		4.50%		6.00%		9.00%		4.50%		6.00%	
(Days)	UC	С	UC	С	UC	С	UC	С	UC	С	UC	С	С	Solution
Day 115	0.2	0.5	0	79.0	0.3	0.7	0.5	133.0	0	89.0	0	20.2	188.7	Added
Day 118	0.3	0.7	0	79.8	0	0.8	0.5	131.5	0	89.5	0	17.8	196.3	
Day 121	0	0.9	0	75.0	0	0.8	0.4	129.2	0	87.3	0	18.2	198.0	
Day 124	0	1.0	0	71.4	0	0.8	0.5	127.1	0	88.3	0	17.4	195.8	
Day 126	0	1.1	0	73.7	0	0.8	0.4	124.6	0	88.8	0	17.2	196.6	Solution
Day 129	0	0.6	0	76.5	0	0.9	0	81.0	0	75.4	0	15.6	162.6	Removed
Day 132	0	0.5	0	75.5	0	0.8	0.4	70.7	0	74.8	0	10.9	114.6	
Day 135	0.3	0.5	0	68.2	0.3	0.7	0.5	66.0	0.1	71.6	0	9.0	91.8	
Day 138	0	0.6	0	65.4	0.4	0.7	0.5	60.2	0	66.6	0.1	8.0	84.8	
Day 140	0.4	0.6	0.3	56.0	0	0.8	0.6	59.9	0.4	65.1	0	7.5	81.6	Solution
			-		- -	-	_			-		-		Added

*Notes: 1) Bolded values represent current values above 10 µA (specified in ASTM G109), indication of chlorides reaching reinforcement steel, 2) UC for Uncracked specimens and C for Cracked specimens

ALL SPECIMENS MACROCELL CURRENT RESULTS

²³

ALL SPECIMENS MACROCELL CURRENT RESULTS

materials and structures

24 NJI

CRACKED SPECIMENS MACROCELL CURRENT RESULTS

materials and structur

25 NJLT

CRACKED SPECIMENS MACROCELL CURRENT RESULTS

26

UNCRACKED SPECIMENS MACROCELL CURRENT

27

OUTLINE

Introduction to Bridge Corrosion

Testing Procedure

Macrocell Current Results

Conclusions

CRACKED VS. UNCRACKED FINDINGS

- For **cracked** specimens:
 - Threshold met for solutions
 greater than 3%.
 - Reached at a greatly accelerated rate
- For **un-cracked** specimens:
 - At all chloride levels no corrosion appears to have initialized

Uncracked

29

Cracked

CRACK WIDTH FINDINGS

- Impact of crack width is currently inconclusive
- For more representative results, testing focusing on crack width and depth should be performed

PONDING SOLUTION FINDINGS

- At this point in testing:
 - In cracked specimens at concentrations above 3% threshold has been reached
 - No difference in current
 results for uncracked at
 current date

FUTURE PLANS

- Continue ponding cycles until uncracked (diffusion) specimens reach threshold
- Use specimens for chloride profile analysis

Image Sources: Gucunski et al. 2012; Germann Instruments; Gulikers 2016 32

THANK YOU / QUESTIONS?

