

Improving Bridge Performance Using Fiber Reinforced Polymer (FRP), Shape Memory Alloy (SMA), and Engineered Cementitious Composites (ECC)

Xiao Tan, Yi Bao*

Advanced Structure and Process Innovation Research (ASPIRE) Laboratory Department of Civil, Environmental and Ocean Engineering Stevens Institute of Technology Hoboken, New Jersey 07030 *Email: <u>yi.bao@stevens.edu</u>

Outline

- My research aims to improve bridge performance through using innovative materials.
- This research addresses the following contents:
 - Advantages of FRP, SMA and ECC;
 - Applications in highway bridges;
 - On-going research;
 - > Conclusions.

Fiber reinforced polymers

- Combination of fibers in polymer matrix:
 - Most loading is carried by the fibers
 - > Matrix provides support and keeps the fibers together
 - Different types of fibers are used
 - ✓ Glass, Carbon, Kevlar49, Boron, Silicon Carbide, etc.
- Has many advantages
 - High strength
 - > Lightweight
 - Fatigue & corrosion resistance
 - Low thermal conductivity & life-cycle cost

Shape memory alloys are smart materials

- With unique capability to "remember" the original shape:
 - Super-elasticity: Return to the original shape (6%~8% strain)
 - Shape memory effect: Recover from large deformations after heating

Engineered cementitious composites (ECC)

- ECC is a smart material with multiple unique properties and functions:
 - Unique mechanical properties
 - Tensile strain-hardening, high tensile ductility (4% strain)
 - Excellent durability
 - ✓ Controlled crack width, self-healing of cracks
 - Superior temperature resistance
 - ✓ High-temperature, low-temperature
 - Multi-functionality (smart functions)
 - ✓ Self-sensing, self-cleaning, air-purifying, etc.

Flexural test of ECC

Applications in Highway Bridges

• Lateral confinement of bridge piers

> Active confinement of concrete bridge piers with NiTiNb SMA spirals and FRPs

Innovative connection

Column-footing connections in seismic zones with SMA bars and ECC

Bridge vibration control

- SMA devices for vibration isolation
- Cable damping devices

Lateral confinement of bridge piers

Innovative connection

Self-centering & self-healing of cracks

Isolate vibration with SMA devices

- Improving the **position stability** of bridges
- Benefits
 - Improving safety and resilience under dynamic loadings
 - Convenient installation and replacement

Cable vibration control with damping devices

• The vibration amplitude of cables and hangers are reduced by 50% using SMA dampers, increasing the service life of the cables/hangers.

On-going research 1:

Improve fire resistance of highway bridges

- Fire may result in permanent damage or even collapse of the bridge
- We improve the fire resistance using prestressed Fe-SMAs and fire-resistive ECC

On-going research 2:

Improve fatigue life of bridges Using SMAs and CFRP

- An active retrofitting technique using SMA/CFRP composite
- Crack-closing capability of SMA and fatigue resistance of FRP

Conclusions

- The combination of FRPs, SMAs, and ECC demonstrated advantages in bridge engineering, especially in earthquake resistance design.
- Active confinement delivered better performance of the bridge piers compared with the passive confinement strategy.
- The piers with SMA/ECC connection recovered the position and demonstrated the minimal permanent drifts.
- The SMAs are promising to control structural vibration, improve fire resistance, and enhance the fatigue resistance of bridges.