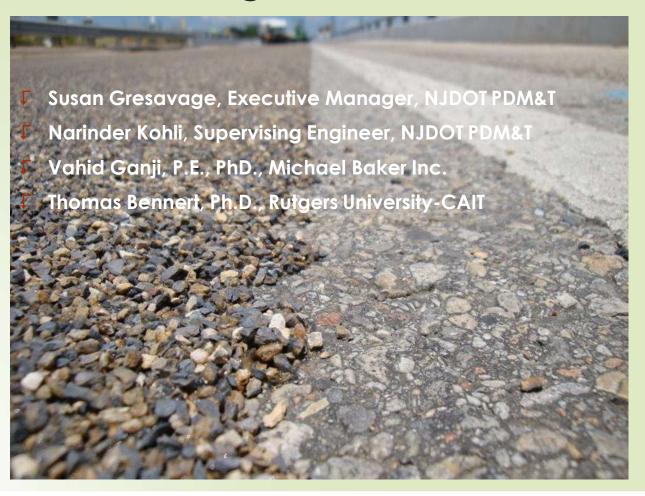
FEATURE CORE INNOVATION AREA PRESENTATION:


HIGH FRICTION SURFACE TREATMENT - LESSONS LEARNED

CIA TEAM
INFRASTRUCTURE
PRESERVATION

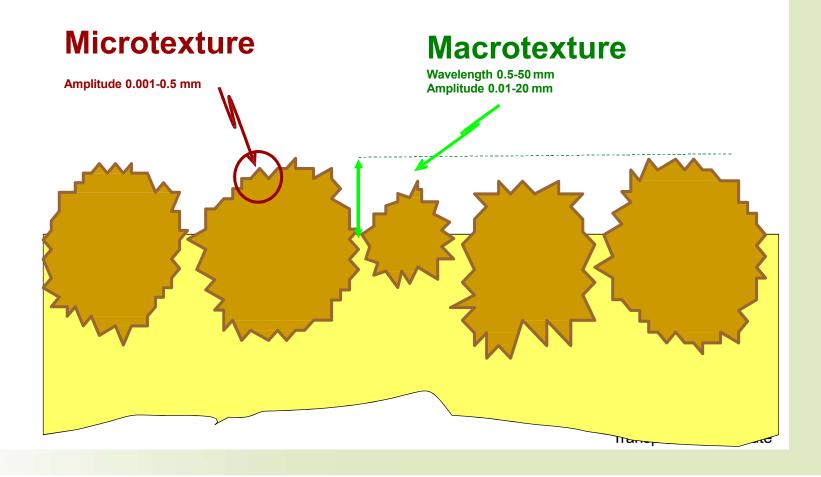
NJDOT – Bob Signora FHWA – John Miller **Robert Blight**, Supervising Engineer NJDOT Pavement Design and Technology Section

Acknowledgements

- - □ polish-resistant <u>calcined</u>
 <u>bauxite</u> aggregate (grit)
 - F bonded to the pavement surface using a polymer resin binder (glue)

- curve location only

 Friction Crashes
- Distracted Driving?- HFST does not need to communicate with the driver to work


Departure Crash Reduction-

- Speeding?- HFST does not enhance driver comfort or promote higher speeds
- It's a Proven, Effective Solution.

Center for Sustainable Transportation Infrastructure

Textures that affects friction

NJDOT SPEC. Surface Quality Skid Resistance Acceptance

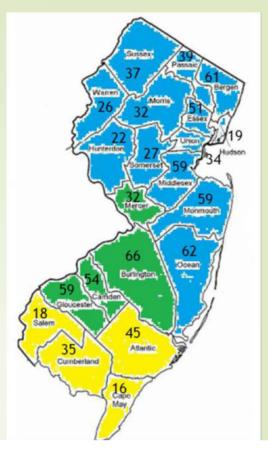
- RE performs visual inspection of HFST
- RE can reject HFST based on visual assessment and require corrective action
- If RE visually approves HFST, then NJDOT Pavement Management performs Skid Resistance Testing using ASTM Test Method E 274 for Initial Acceptance
 - Average Minimum SN ≥ 65

HFST Quality Acceptance Skid Test Video

- - Pavement preservation methods
 - Pavement repair methods
 - □ Bridge deck overlays
 - Feducational or driver alert systems (not rumble strips)
 - □ Only wet weather systems
- HFSTs ARE: Designed to act mostly invisibly, under all times of the day or night, in all weather conditions to dramatically enhance the friction and reduce or eliminate roadway departure crashes.

Where to Install HFST?

- On and Off Ramps—especially with elevation change (loop ramps)
- Steep Grades
- F High Speed connectors/Merge locations
- Where there are high crash clusters, roadway departures or poor roadway friction conditions



Lessons Learned & Challenges

HFST Pilot Program Start

2016 Lane Departure Serious Injuries and Fatalities in New Jersey

- □ Safety Programs and NJ FHWA requested Pavement Design assistance for HFST Specification
- □ Goal: Reduce Roadway Departures on Horizontal Curves
- Other products being used as HFST by Locals
- Pavement Design provided Safety Programs HFST Specification in March 2016

FOLLOW NJDOT HEST GUIDELINES

- Newer pavement with adequate Remaining Service Life
- □ Distress free or repair/resurface

- Quality material

Apply HFST <u>ONLY</u> on <u>GOOD Pavement</u>

FOLLOW NJDOT SPECIFICATION

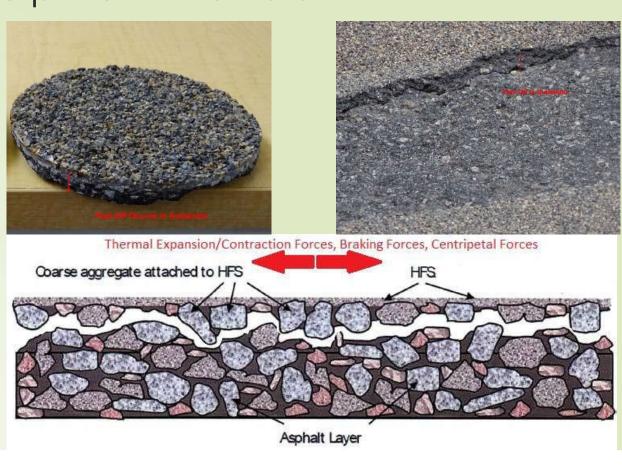
- **↓** MATERIALS
- **F EQUIPMENT**
- **↓** EXPERIENCE
- WEATHER LIMITATIONS
- CONSTRUCTION REQUIREMENTS
- **■ QUALITY ASSURANCE**
- MAINTENANCE BOND (3 YEARS)

TRUCK MOUNTED HFST APPLICATION EQUIPMENT VS. MANUAL APPLICATION

Manual HFST Placement or Mechanically Assisted Installation = Premature Failure

Automated Equipment Installation = Best Opportunity for Success

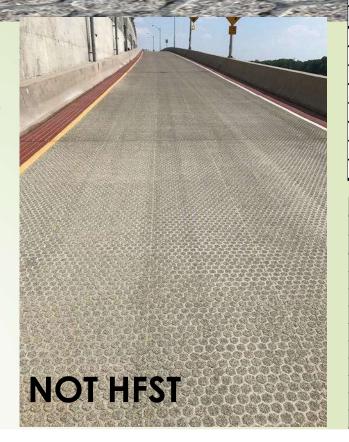
Automated HFST Equipment Video


Equipment NOT Properly Designed

Pavement Condition & Proper HFST Equipment Matters

Pavement Condition & Proper HFST Equipment Matters

HFST Failure Forensic Investigation - Conclusions

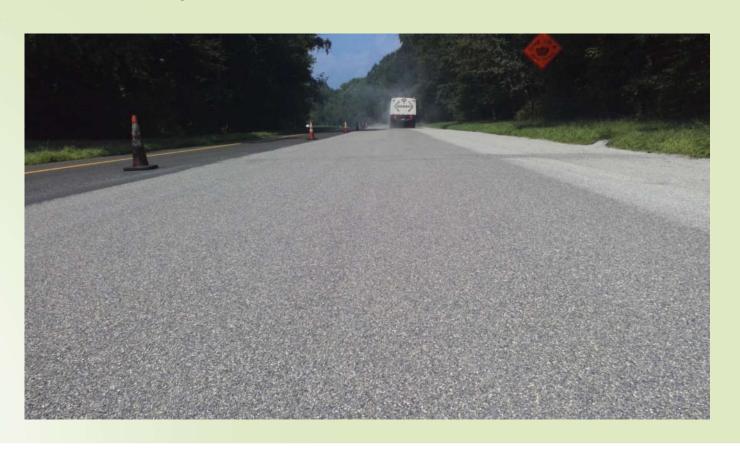

- Asphalt pavement was significantly aged or contained high amounts of RAP when placed in 2014
- Areas within the project showed excessive amounts of epoxy binder thickness and high variability of thickness
- Combination of poor asphalt and excessive epoxy binder caused accelerated delamination failures in the asphalt substrate

Improper Automated Equipment – Video Variability of Binder Thickness

Products Advertised as HFST, but Not HFST = Inadequate Skid Resistance

Route 29 Southbound to Lalor St. Ramp										
Pass 1		Pass 2		Pass 3		Average				
MP	SN40	MP	SN40	MP	SN40	SN40				
0.000	40.5	0.000	37.4	0.000	36.7	38.2				
0.036	37.2	0.024	32.9	0.035	36.4	35.5				
0.071	34.1	0.054	31.4	0.073	32.7	32.7				
0.109	52.2	0.085	50.0	0.111	46.5	49.6				
0.144	51.4	0.119	50.1	0.141	50.4	50.6				
0.174	48.2	0.142	49.7	0.163	48.4	48.8				
0.203	49.5	0.168	45.4	0.186	51.8	48.9				
0.229	54.4	0.200	54.2	0.206	50.7	53.1				

Route 29 Southbound to Lalor St. Ramp									
Pass 1		Pass 2		Pass 3		Average			
MP	SN40	MP	SN40	MP	SN40	SN40			
0.000	66.4	0.000	66.3	0.000	66.7	66.5			
0.013	64.2	0.011	56.5	0.011	61.5	60.7			
0.026	63.0	0.022	56.8	0.022	55.9	58.6			
0.039	52.2	0.034	63.1	0.036	49.9	55.1			
0.053	58.8	0.048	65.9	0.058	59.9	61.5			
0.067	64.0	0.064	59.9	0.086	55.9	59.9			
0.082	55.6	0.081	55.8	0.100	60.0	57.1			
0.099	58.3	0.098	56.1	0.113	61.5	58.6			
0.115	60.8	0.115	57.5	0.125	59.4	59.2			
0.13	52.7	0.131	52.9	0.138	65.1	56.9			


Products Advertised as HFST, but Not HFST = Premature Failure

NOT HFST

Route 68 High Friction Chip Seal (HFCS) Case Study

Route 68 High Friction Chip Seal (HFCS) Case Study

- What if we tried high friction aggregate with a highly modified asphalt binder?
- Try some other aggregates? Locally sourced

 - Calcined Bauxite (Great Lakes Minerals)
 - Flint Rock (Oklahoma)

Route 68 High Friction Chip Seal (HFCS) Case Study

PG82-22 FR Binder Appl.

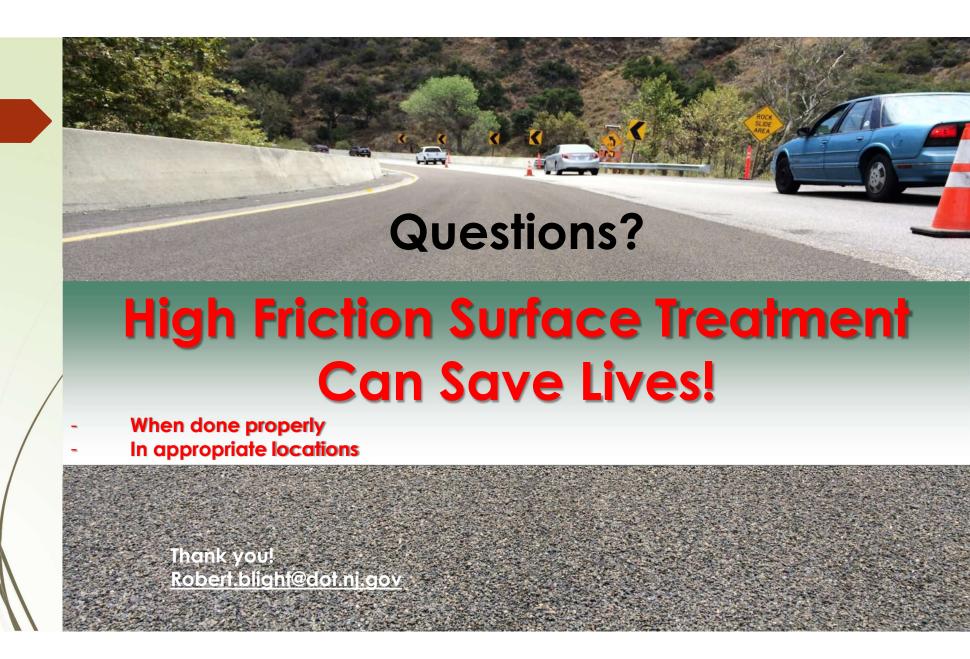
Aggregate Spreading

High Friction Chip Seal Installation Video

- Automated equipment matters properly functioning and calibrated
- Make sure pavement condition is GOOD!
 - ∇ Visual condition assessment NOT ADEQUATE!
- Not all products advertised as HFST meet NJDOT specification or FHWA/AASHTO requirements
- F Experience and workmanship matters
- F Researching HFCS. Stay Tuned!

Challenges – Aggressive Snow Operations

Challenges – Aggressive Snow Operations + Improper HFST Equipment



Challenges – Maintenance Bond Enforcement

Stay Tuned!

