Automated Traffic Signal Performance Measures

NJ State Transportation Innovation Council
May 7th, 2019

Kelly McVeigh, Principal Traffic Engineer
NJDOT – Transportation Mobility
• Introduction to Automated Traffic Signal Performance Measures (ATSPMs)
• NJDOT Research Project
• Future work involving ATSPMs
• Questions
Introduction to ATSPMs

- What is the NEED?
Introduction to ATSPMs

- Traffic Engineers **NEED** to know how signal timings perform.
- Traditional process of knowing is a lengthy one.

Choose corridor based on congestion, complaints, crashes, etc. → Data Collection (turning movement counts, queue estimates, etc.) → Develop Synchro or HCM models → Transcribe model timings to Timing Directive → Program traffic signal controller timing parameters → Compare before and after performance (travel times, number of stops, queues, etc.)

ATSPMs

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
Introduction to ATSPMs

• Most practitioners would agree.
Introduction to ATSPMs

• HOW do you generate ATSPMs?

Indiana Traffic Signal Hi Resolution Data Logger Enumerations

6 Events occur at the signal head:
1. Begin of Green
2. End of Green
3. Begin of Yellow
4. End of Yellow
5. Begin of Red
6. End of Red

When a controller timestamps those events, they become Hi-resolution Data

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
Introduction to ATSPMs

• **WHY** would you generate ATSPMs?

• **Increased Safety.** A shift to proactive operations and maintenance practices can improve safety by reducing the traffic congestion that results from poor and outdated signal timing.

• **Targeted Maintenance.** ATSPMs provide the actionable information needed to deliver high-quality service to customers, with significant cost savings to agencies.

• **Improved Operations.** Active monitoring of signalized intersection performance lets agencies address problems before they become complaints.

• **Improved Traffic Signal Timing and Optimization Policies.** Agencies are able to adjust traffic signal timing parameters based on quantitative data without requiring a robust data collection and modeling process.
NJDOT Research Project

NJDOT Project 2016-14
Real-Time Traffic Signal Performance Measurement

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJDOT Research Project

Project Team

NJDOT Research
 Kim Davis, Section Chief, Statewide Planning

NJDOT Transportation Mobility
 Kelly McVeigh, Principal Engineer Traffic
 Shazia Khizir, Assistant Engineer Traffic

Rutgers Center for Advanced Infrastructure and Transportation (CAIT)
 Peter Jin, Ph.D., Assistant Professor

The College of New Jersey (TCNJ)
 Thomas Brennan, Ph.D., PE., Associate Professor

Rowan University
 Mohammad Jalayer, Ph.D., Assistant Professor

NJDOT – Transportation Mobility
 “Improving Lives by Improving Mobility”
Objectives:
- Based on the existing infrastructure operated and maintained by NJDOT.
- Develop a prototype ATSPM system.

NJDOT Infrastructure:
- Centralized control (servers)
- Fiber-optic communication
- Adaptive Signal Control Technology (ASCT)
NJ DOT Research Project

• NJDOT is actively deploying ASCT.

Full Operation:
NJ-18 (SCATS) = 13 Signals
US-1 (InSync) = 22 Signals
US-130 (SCATS) = 18 Signals
US-130 (InSync) = 12 Signals
NJ-168 (InSync) = 11 Signals
MASSTR (SCATS) = 123 Signals

Under Construction/Final Design:
US-1 = 12 Signals
NJ-73 = 29 Signals

Concept Development:
11 Corridors = 122 Signals

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- What do Adaptive Systems have to offer?

<table>
<thead>
<tr>
<th>Time</th>
<th>Duration</th>
<th>Movement</th>
<th>Phase 2 (NT)</th>
<th>Phase 3 (WL)</th>
<th>Phase 4 (ET)</th>
<th>Phase 6 (ST)</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:03:32 AM</td>
<td>148</td>
<td></td>
<td>13</td>
<td>47</td>
<td>0</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>06:05:09 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:06:09 AM</td>
<td></td>
<td>Ped Called</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:06:24 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:06:33 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:07:14 AM</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:09:04 AM</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
What do Adaptive Systems have to offer?
NJ DOT Research Project

- Project Team Challenge:
- Translate Adaptive Signal Data to ATSPM Source Code Data

Indiana Traffic Signal Hi Resolution Data Logger Enumerations

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Descriptor</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Phase On</td>
<td>Phase # (1-16)</td>
<td>Set when NEMA Phase On becomes active, either upon start of green or walk interval, whichever occurs first.</td>
</tr>
<tr>
<td>1</td>
<td>Phase Begin Green</td>
<td>Phase # (1-16)</td>
<td>Set when either solid or flashing green indication has begun. Do not set repeatedly during flashing operation.</td>
</tr>
<tr>
<td>2</td>
<td>Phase Check</td>
<td>Phase # (1-16)</td>
<td>Set when a conflicting call is registered against the active phase. (Marks beginning of MAX timing)</td>
</tr>
<tr>
<td>3</td>
<td>Phase Min Complete</td>
<td>Phase # (1-16)</td>
<td>Set when phase min timer expires.</td>
</tr>
<tr>
<td>4</td>
<td>Phase Gap Out</td>
<td>Phase # (1-16)</td>
<td>Set when phase gaps out, but may not necessarily occur upon phase termination. Event may be set multiple times within a single green under simultaneous gap out.</td>
</tr>
<tr>
<td>5</td>
<td>Phase Max Out</td>
<td>Phase # (1-16)</td>
<td>Set when phase MAX timer expires, but may not necessarily occur upon phase termination due to last car passage or other features.</td>
</tr>
<tr>
<td>6</td>
<td>Phase Force Off</td>
<td>Phase # (1-16)</td>
<td>Set when phase force off is applied to the active green phase.</td>
</tr>
</tbody>
</table>

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- Project Test Intersections
- US-1 at Harrison (InSync)
- US-1 at Henderson (InSync)
- NJ-18 at Hillsdale (SCATS)
Insync Signal Event Conversion

Convertible Signal Event

<table>
<thead>
<tr>
<th>Code</th>
<th>Event</th>
<th>Insync Translator Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PhaseOn</td>
<td>Get from movement start time</td>
</tr>
<tr>
<td>1</td>
<td>PhaseBeginGreen</td>
<td>"Current Running" in SCATS message</td>
</tr>
<tr>
<td>2</td>
<td>PhaseCheck</td>
<td>"Phase demand" in SCATS message</td>
</tr>
<tr>
<td>3</td>
<td>PhaseMinComplete</td>
<td>"signal Group: SG6-off" in SCATS message</td>
</tr>
<tr>
<td>4</td>
<td>PhaseGapOut</td>
<td>Green Duration < Maximum Green</td>
</tr>
<tr>
<td>5</td>
<td>PhaseMaxOut</td>
<td>Green Duration > Maximum Green</td>
</tr>
<tr>
<td>6</td>
<td>PhaseGreenTermination</td>
<td>Movement End Time</td>
</tr>
<tr>
<td>7</td>
<td>PhaseBeginYellowClr</td>
<td>Phase interval: Yellow in SCATS message</td>
</tr>
<tr>
<td>8</td>
<td>PhaseEndYellowClr</td>
<td>Phase interval: Yellow in SCATS message</td>
</tr>
<tr>
<td>9</td>
<td>PhaseBeginRedClr</td>
<td>"Phase interval: All Red" in SCATS message</td>
</tr>
<tr>
<td>10</td>
<td>PhaseEndRedClr</td>
<td>"Phase interval: All Red" in SCATS message</td>
</tr>
<tr>
<td>11</td>
<td>PhaseInactive</td>
<td>keyword: "Phase termination"</td>
</tr>
<tr>
<td>12</td>
<td>PedBeginWalk</td>
<td>"Pedestrian Sent" is in Insync log</td>
</tr>
<tr>
<td>13</td>
<td>PhaseCallRegistered</td>
<td>conflicting movements have waiting time</td>
</tr>
<tr>
<td>14</td>
<td>PedCallRegistered</td>
<td>"Pedestrian Called" is in Insync log</td>
</tr>
</tbody>
</table>

SCATS Signal Event Conversion

Convertible Signal Event

<table>
<thead>
<tr>
<th>Code</th>
<th>Event</th>
<th>Insync Translator Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PhaseOn</td>
<td>Get from movement start time</td>
</tr>
<tr>
<td>1</td>
<td>PhaseBeginGreen</td>
<td>"Current Running" in SCATS message</td>
</tr>
<tr>
<td>2</td>
<td>PhaseCheck</td>
<td>"Phase demand" in SCATS message</td>
</tr>
<tr>
<td>3</td>
<td>PhaseMinComplete</td>
<td>"signal Group: SG6-off" in SCATS message</td>
</tr>
<tr>
<td>4</td>
<td>PhaseGapOut</td>
<td>Green Duration < Maximum Green</td>
</tr>
<tr>
<td>5</td>
<td>PhaseMaxOut</td>
<td>Green Duration > Maximum Green</td>
</tr>
<tr>
<td>6</td>
<td>PhaseGreenTermination</td>
<td>Movement End Time</td>
</tr>
<tr>
<td>7</td>
<td>PhaseBeginYellowClr</td>
<td>Phase interval: Yellow in SCATS message</td>
</tr>
<tr>
<td>8</td>
<td>PhaseEndYellowClr</td>
<td>Phase interval: Yellow in SCATS message</td>
</tr>
<tr>
<td>9</td>
<td>PhaseBeginRedClr</td>
<td>"Phase interval: All Red" in SCATS message</td>
</tr>
<tr>
<td>10</td>
<td>PhaseEndRedClr</td>
<td>"Phase interval: All Red" in SCATS message</td>
</tr>
<tr>
<td>11</td>
<td>PhaseInactive</td>
<td>keyword: "Phase termination"</td>
</tr>
<tr>
<td>12</td>
<td>PedBeginWalk</td>
<td>"Pedestrian Sent" is in Insync log</td>
</tr>
<tr>
<td>13</td>
<td>PhaseCallRegistered</td>
<td>conflicting movements have waiting time</td>
</tr>
<tr>
<td>14</td>
<td>PedCallRegistered</td>
<td>"Pedestrian Called" is in Insync log</td>
</tr>
</tbody>
</table>

NJDOT – Transportation Mobility

“Improving Lives by Improving Mobility”
<table>
<thead>
<tr>
<th>Key ATSPM Performance Metrics translated from Adaptive Systems</th>
<th>ATSPM Event Code Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue Coordinate Diagram (PCD)</td>
<td>Controller timing of red, yellow, and green intervals (event 1, event 7, event 8, event 9, event 10, event 11)</td>
</tr>
<tr>
<td>Purdue Phase Termination Charts</td>
<td>Termination reasons (event 4, event 5)</td>
</tr>
<tr>
<td>Split Monitor</td>
<td>Phase Termination Events (event 0, event 7, event 8, event 9, event 11)</td>
</tr>
<tr>
<td>Pedestrian Delay</td>
<td>Pedestrian Actuation (event 21, event 43, event 45)</td>
</tr>
</tbody>
</table>

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- Translator:

```
def NEMAphaseNumber():
    # get NEMA Phase and Number hashtable from metadata
    global InsyncMetaData
    nemaPhase2Number = {}
    nemaNumber2Phase = {}
    phaseFieldNum = []

    movesAndNums = set(zip(InsyncMetaData["phaseMove"], InsyncMetaData["phaseNum"]))
    for item in movesAndNums:
        moves, nemaNumbers = item
        for item in zip(moves.split("/"), nemaNumbers.split("/")):
            nemaPhase2Number[item[0]] = int(item[1])
            nemaNumber2Phase[item[1]] = int(item[0])
            phaseFieldNum.append(int(item[1]))
    phaseFieldNum = list(set(phaseFieldNum))
    phaseFieldNum.sort()
    return nemaPhase2Number, nemaNumber2Phase, phaseFieldNum
```

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

• Example Event Translation: Pedestrian Delay (SCATS to ATSPM)

This SCATS logged event indicates that the Phase 8 pedestrian push button was triggered. This translates to ATSPM Event Code 45: “Pedestrian Call Registered”.

This SCATS logged event indicates that the Phase 8 pedestrian walk signal is on. This translates to ATSPM Event Code 21: “Pedestrian Begin Walk”.

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- Example Event Translation: Pedestrian Delay (SCATS to ATSPM)

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- Overall Process:

 SCATS (Central)

 InSync (De-centralized)

 NJDOT Folder

 ATSPM

 Database

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJ DOT Research Project

- **Challenges:**
 - Python Code sits outside of ATSPM software. This process is mostly independent of the ATSPM software.
 - Estimating maximum green time for individual phases (Adaptive). Issue for Phase Termination.
 - Obtaining the hi-resolution detector inputs is not currently possible. Limits available measures.

- **Successes:**
 - Able to provide Purdue Phase Termination graph, Pedestrian Delay, Split Monitor, Purdue Coordination Diagram (without detector actuations).
 - Able to automatically generate an ATSPM file that can be read by the FHWA ATSPM source code.
Future ATSPM Work

• Develop NJDOT ATSPM architecture.
 • Work with OIT to assign server for ATSPM suite of applications (includes Web Server) and SQL DB.
 • Map ATSPM server to InSync and SCATS Data Folders.
 • Download Python Software Package and web-scraper tool.
 • Update field hardware (TS Controllers) for traditional ATSPM deployment.

• ATSPM source code edits.
 • 3rd party software developer proficient in C# and Adaptive Vendors.
 • SCATS Degree of Saturation, Original Volume, and Corrected Volume.
 • InSync Queue and Wait Times.

• Determine how to best utilize ATSPM outputs.
 • Develop policy for changing signal timings (e.g. using Link Pivot algorithm).
 • Potential for utilizing specific ATSPMs in an Adaptive or Responsive mode of operation.

NJDOT – Transportation Mobility
“Improving Lives by Improving Mobility”
NJDOT – Transportation Mobility “Improving Lives by Improving Mobility”