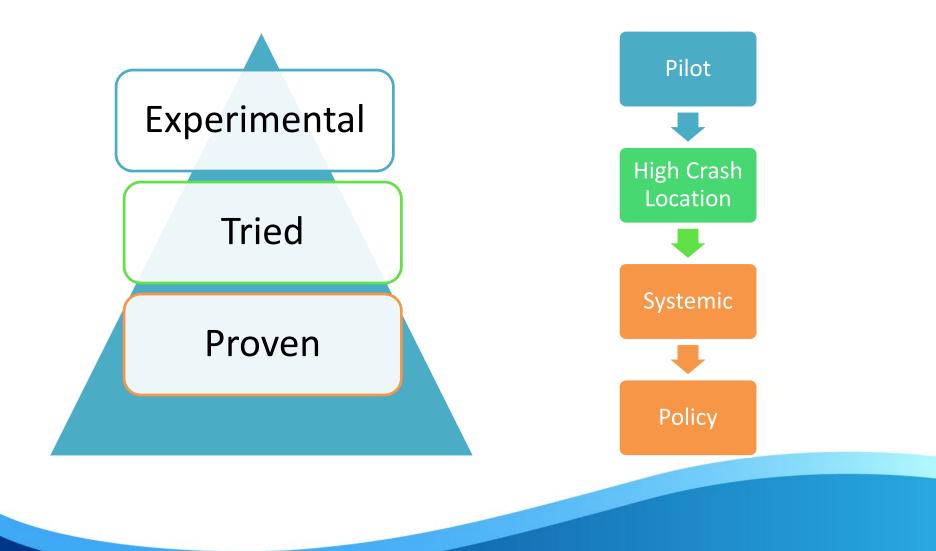
FHWA's 2017 Update of the Proven Safety Countermeasures


Make Your Mark A Local Safety Peer Exchange March 26, 2019

http://safety.fhwa.dot.gov

Life Cycle of a Safety Countermeasure

FHWA's Proven Safety Countermeasures

Intersection

- Left- and Right-Turn Lanes at Two-Stop Controlled Intersections
- Backplates with Retroreflective Borders
- Corridor Access Management
- Yellow Change Interval
- Roundabouts
- Systemic Application of Multiple Low Cost Countermeasures at Stop-Controlled Intersections*
- Reduced Left-Turn Conflict Intersections*

Roadway Departure

- Longitudinal Rumble Strips and Stripes along Two-Lane Highways
- Median Barrier
- SafetyEdgeSM
- Enhanced Delineation and Friction for Horizontal Curves
- Roadside Design Improvements at Curves*

Pedestrian

- Medians and Pedestrian Crossing Islands in Urban and Suburban Areas
- Pedestrian Hybrid Beacon
- Road Diet
- Walkways
- Leading Pedestrian Intervals*

Crosscutting Strategies

- Road Safety Audits
- Local Road Safety Plans*
- US Limits*

PSCi – Intersections

Left- and Right-Turn Lanes at Two-Way Stop-Controlled Intersections

Backplates with Retroreflective Borders

Corridor Access Management

Yellow Change Interval

Roundabouts

Systemic Application of Multiple Low-Cost Countermeasures at Stop-Controlled Intersections

Reduced Left-Turn Conflict Intersections

Left and Right Turn Lanes at Two-Way Stop-Controlled Intersections

Example of left-turn lanes.

Example of a right-turn lane.

SAFETY BENEFITS:

LEFT-TURN LANES 28-48% Reduction in total crashes

RIGHT-TURN LANES 14-26% Reduction in total crashes

Source: Highway Safety Manual

Backplates with Retroreflective Borders

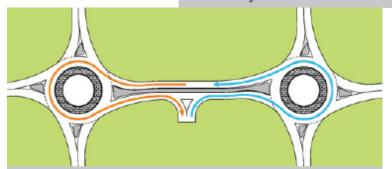
Safety Benefit:

15% Reductions in total crashes

Source: CMF Clearinghouse, CMF ID 1410.

Example of a signal backplate framed with a retroreflective border.

Corridor Access Management



This intersection design restricts left-turn

movements to improve safety.

A raised median reduces conflict points along this roadway.

Use of roundabouts, raised median, and right-in/right-out driveways can be an effective access management plan.

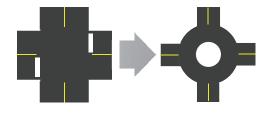
SAFETY BENEFITS:

5-23% Reduction in total crashes along 2-lane rural roads

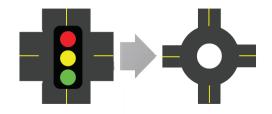
25-31% Reduction in injury and fatal crashes along urban/suburban arterials

Source: Highway Safety Manual

Yellow Change Interval


Properly-timed yellow change intervals can reduce red-light running and improve overall intersection safety.

Safety Benefits of Well-Timed Yellow Change Intervals: 36-50% Reduction in red light running 8-14% Reduction in total crashes 12% Reduction in injury crashes Source: NCHRP Report 731, Guidelines for Timing Yellow and All-Red Intervals at Signalized Intersections.


Roundabouts

Two-Way Stop-Controlled Intersection to a Roundabout

82% Reduction in severe crashes Signalized Intersection to a Roundabout

78% Reduction in severe crashes

Source: Highway Safety Manual

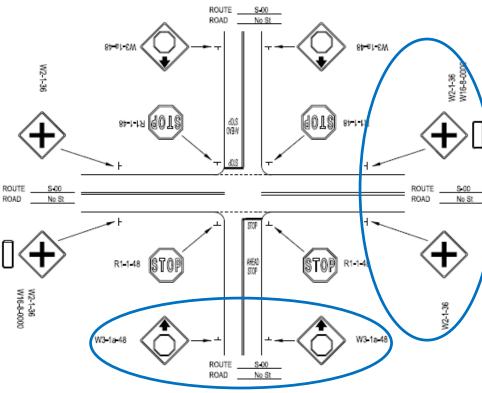
- Systemic Application of Multiple Low Cost Countermeasures at Stop-Controlled Intersections
- Mostly signing & pavement marking enhancements.
- Strategy relies on cost economy and treatment saturation.
- Best suited for intersections with under 20,000 AADT Total Entering.

Systemic Approach for Stop Intersections

Evaluation Results from LCSI-PFS Study:

- Sample consisted of 434 treated sites and 568 reference sites across South Carolina.
- Included 2X2 (3-leg, 4-leg) and 4X2 (3-leg, 4-leg) sites.
- Range of 3-5 years before and after data.

Recommended CMFs from FHWA-HRT-17-086							
	Total	Fatal & Injury	Rear End	Right Angle	Nighttime		
CMF	0.917	0.899	0.933	0.941	0.853		

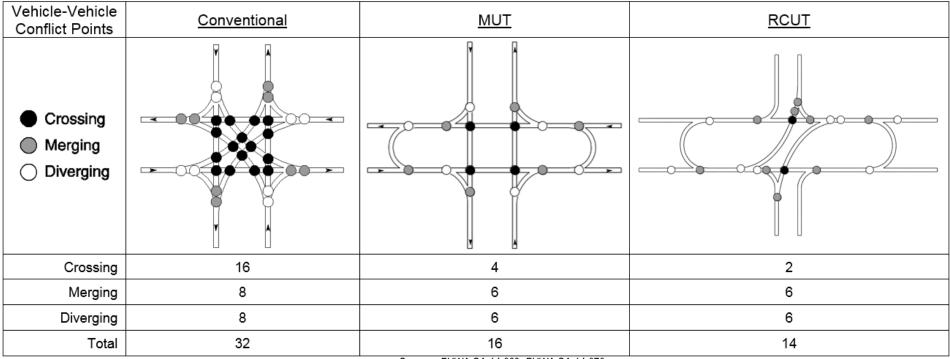

Systemic Approach for Stop Intersections

Evaluation Results from LCSI-PFS Study:

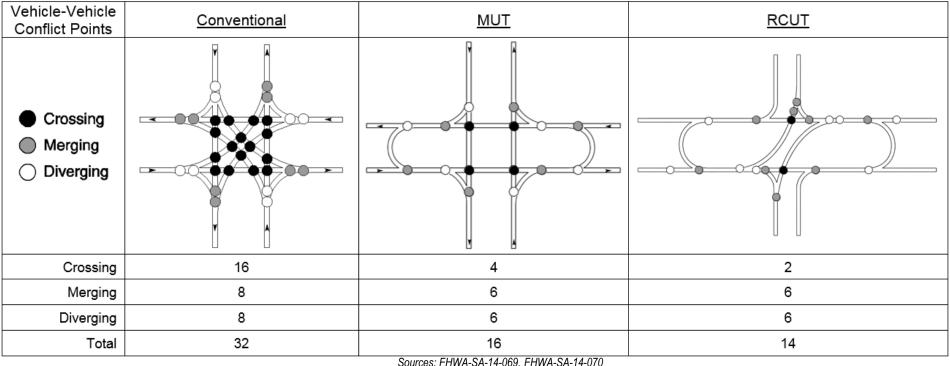
- Sample consisted of 434 treated sites and 568 reference sites across South Carolina.
- Included 2X2 (3-leg, 4-leg) and 4X2 (3-leg, 4-leg) sites.
- Range of 3-5 years before and after data.

Recomined CMFs from FHWA-HRT-17-086							
	Total	Fatal & Injury	Rear End	Right Angle	Nighttime		
CMF	0.917	0.899	0.933	0.941	0.853		

Systemic Approach for Stop Intersections


Reduced Left-Turn Conflict Intersections (MUT and RCUT)

- Geometric designs that alter how left-turn movements occur.
- Simplify and reduce or modify conflicts related to turning.
- Proven safety <u>and</u> operational benefits.



Reduced Left-Turn Conflict Intersections

Sources: FHWA-SA-14-069, FHWA-SA-14-070

Reduced Left-Turn Conflict Intersections

MUT Safety Performance

- 30% decrease F&I Crashes.
- 16% decrease All Crashes.

RCUT Safety Performance

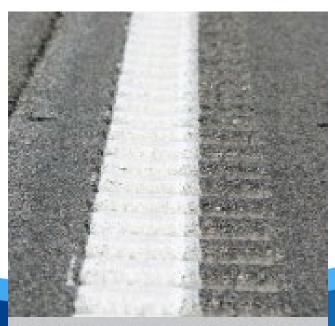
- 54% decrease F&I Crashes.
- 35% decrease All Crashes.

PSC*i* – Roadway Departure

Longitudinal Rumble Strips and Stripes along Two-Lane Highways

Median Barrier

Enhanced Delineation and Friction for Horizontal Curves


Roadside Design Improvements at Curves

Longitudinal Rumble Strips and Stripes

Shoulder rumble strips and center line rumble stripes are installed on this roadway.

Example of an edge line rumble stripe.

SAFETY BENEFITS:

Center Line Rumble Strips 44-64% Head-on, opposite-direction, and sideswipe fatal and injury crashes

Shoulder Rumble Strips 13-51% Single vehicle, run-off-road fatal and injury crashes

Source: NCHRP Report 641, *Guidance for the* Design and Application of Shoulder and Centerline Rumble Strips

Median Barrier

Median cable barrier prevents a potential head-on crash.

SAFETY BENEFITS: Median Barriers Installed on Rural Four-Lane Freeways 97% Reduction in cross-median crashes

Soruce: NCHRP Report 794, *Median Cross-Section Design for Rural Divided Highways*

SafetyEdge_{SM}

Example of SafetyEdge after backfill material settles or erodes.

SAFETY BENEFIT:

11% Reduction in fatal and injury crashes

Source: Safety Effects of the SafetyEdge_{SM}, FHWA-SA-17-044

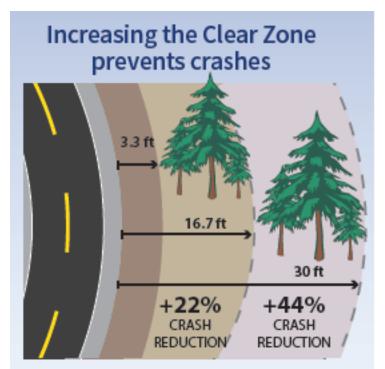
SafetyEdgeSM CMFs

Drop-Off	0.655	
ROR	0.790	
Head-on	0.813	
F+I	0.892	-
Total	0.989	

Enhanced Delineation and Friction for Curves

Chevron signs installed along a curve.

SAFETY BENEFITS: Chevron Signs 25% Reduction in nighttime crashes 16% Reduction in non-intersection fatal and injury crashes Source: CMF Clearinghouse, CMF IDs 2438 and 2439 SAFETY BENEFITS: High Friction Surface Treatment 52% Reduction in wet road crashes 24% Reduction in curve crashes Source: CMF Clearinghouse, CMF IDS 7900 and 7901


Roadside Design Improvements at Curves

- Increase clear zone at curves.
 - Recommended by AASHTO RDG.
 - Proven to reduce crashes.
- Improve traversability.
 - Adding or widening shoulders in curves.
 - flatter slopes at curves than in tangent sections.
- Reconsider when to install barrier
 - Reduce severity.

Roadside Design Improvements at Curves

Increase Clear Zone on the Outside of Curves

Source: Leidos. Data Source: CMF Clearinghouse (CMF IDs 35 and 36) 27% of all fatal crashes occur at cuves 80% of all fatal crashes at curves are roadway departure crashes

PSC*i* – **Pedestrians & Bicycles**

Medians and Pedestrian Crossing Islands in Urban and Suburban Areas

Pedestrian Hybrid Beacon

Medians and Pedestrian Crossing Islands

Median and pedestrian crossing islands near a roundabout.

Example of a road with a median and pedestrian crossing islands.

SAFETY BENEFITS:

Raised Median 46% Reduction in pedestrian <u>crashes</u>

Pedestrian Crossing Island 56% Reduction in pedestrian crashes

Source: Desktop Reference for Crash Reduction Factors, FHWA-SA-08-011, September 2008, Table 11

Example of a pedestrian crossing island.

Pedestrian Hybrid Beacons

Pedestrians cross the roadway at a PHB location.

Example of PHBs mounted on a mast arm.

Safety Benefits:

69% Reduction in pedestrian crashes

29% Reduction in total crashes

15% Reduction in serious injury and fatal crashes

Source: CMF Clearinghouse, CMF IDs: 2911, 2917, 2922

Road Diets

Road Diet project in Honolulu, Hawaii.

SAFETY BENEFIT:

 $\begin{array}{c} \mbox{4-Lane} \rightarrow \mbox{3-Lane} \\ \mbox{Road Diet Conversions} \\ \mbox{19-47\%} \\ \mbox{Reduction in total crashes} \end{array}$

Source: *Evaluation of Lane Reduction "Road Diet" Measures on Crashes*, FHWA-HRT-10-053.

Walkways

Example of a shared use path.

Example of a sidewalk in a residential area.

Paved shoulder used as a walkway.

SAFETY BENEFITS:

Sidewalks 65-89% Reduction in crashes involving pedestrians walking along roadways

Paved Shoulders 71% Reduction in crashes involving pedestrians walking along roadways

Source: *Desktop Reference for Crash Reduction Factors*, FHWA-SA-08-011, Table 11

Leading Pedestrian Interval

 Pedestrians get "WALK" signal before vehicles get green light.

- Provides pedestrians a 3-7 second head start before vehicles are given a green indication.
- Allows pedestrians to establish presence in crosswalk before vehicles have priority to turn left.

Leading Pedestrian Interval

Benefits:

- 60% reduction in pedestrianvehicle crashes at intersections.
- Increased visibility of crossing pedestrians.
- Reduced conflicts between pedestrians and vehicles.
- Increased likelihood of motorists yielding.

PSC*i* – **Crosscutting Strategies**

Road Safety Audits

Local Road Safety Plans

Road Safety Audits

A road safety audit is a <u>proactive</u> formal safety performance examination of an existing or future road or intersection by an <u>independent</u> and <u>multi-</u> <u>disciplinary</u> team.

Multi-disciplinary team performs field review

SAFETY BENEFIT: 10-60% Reduction in total crashes

Source: Road Safety Audits: An Evaluation of RSA Programs and Projects, FHWA-SA-12-037; and FHWA Road Safety Audit Guidelines, FHWA-SA-06-06.

Local Road Safety Plans

- Developing an LRSP is an effective strategy to improve local road safety.
- Local roads experience 3X the fatality rate of the Interstate Highway System.

USLIMITS2

- Free Web-based Tool
- Designed to help practictioners assess and establish safe, reasonable and consistent speed limits
- Supports customary engineering studies
- Produces unbiased and objective suggested speed limit value based on:
 - 50 th and 85 th percentile speeds
 - Traffic volumes
 - Roadway characteristics
 - Crash data

PSC*i* – Available Resources

http://safety.fhwa.dot.gov/provencountermeasures

- 1-pager marketing flyers.
- Slides from webinar and link to recorded session.
- Links to additional FHWA resources for each item.

Contacts for Further Information

Intersection Countermeasures:

Jeffrey Shaw jeffrey.shaw@dot.gov (708) 283-3524

Roadway Departure Countermeasures:

Menna Yassin <u>menna.yassin@dot.gov</u> (202) 366-2833

Cathy Satterfield <u>cathy.satterfield@dot.gov</u> (708) 283-3552

Pedestrian/Bicycle Countermeasures:

Tamara Redmontamara.redmon@dot.gov(202) 366-4077

Crosscutting:

LRSP – Rosemarie Anderson <u>rosemarie.anderson@dot.gov</u> (202) 366-5007

RSA – Becky Crowe <u>rebecca.crowe@dot.gov</u> (804) 775-3381

USLIMITS2 – Guan Xu guan.xu@dot.gov (202) 366-5892

Additional Resources

- Crash Modification Factors Clearinghouse
 - http://www.cmfclearinghouse.org
- Systemic Safety Project Selection Tool
 - <u>http://safety.fhwa.dot.gov/systemic</u>
- US Roadway Assessment Program
 - <u>http://www.usrap.org/</u>
- Pedestrian and Bicycle Crash Analysis Tool
 - <u>http://www.pedbikeinfo.org/pbcat_us/</u>

Time to Share!!!

- Which of these countermeasures have you tried in your jurisdiction?
 - Successes?
 - Challenges?
- Have adopted any of these countermeasures into agency policies or design standards?
- What other proven safety countermeasures have you tried in your jurisdiction?