
Data-Driven Safety Analysis – Nominal vs. Substantive Safety.

Integrating Safety Performance into ALL Highway Investment Decisions

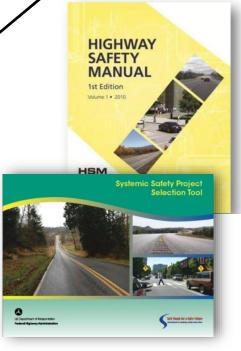
"Safety"

- A core value for all transportation agencies
- Our customers have been assured that maintaining and improving safety is a top priority
- Much of an agency's investments are intended to produce a "safe" highway or system
- "Safety" has traditionally been incorporated in highway programs and projects within a standards-based framework

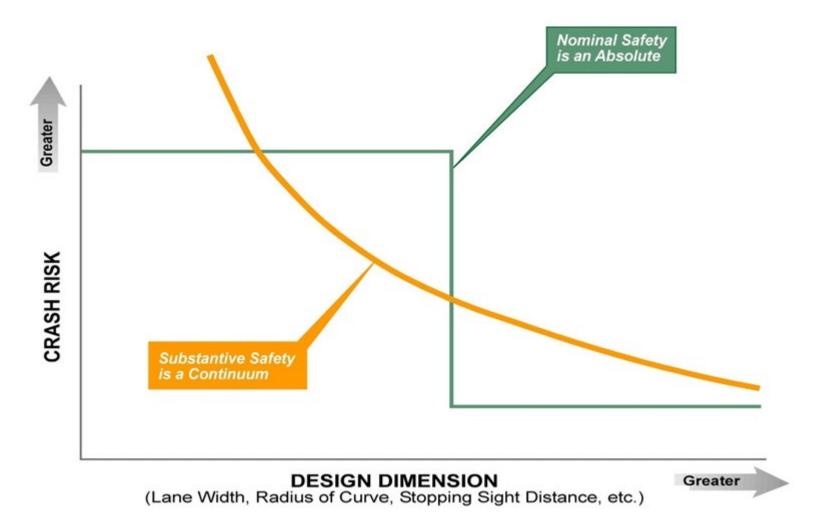


Approaches for Considering Safety

Nominal Safety


Substantive Safety

Source: AASHTO



Examined in reference to compliance with standards, warrants, guidelines and sanctioned design procedures

The actual or expected performance in terms of crash frequency and severity

Nominal vs Substantive Safety

Hwy Design Standards in the U.S.

Initially, AASHO's Committee on Standards confined itself to disseminating information on design to its members, but in 1928 it proposed that the Association adopt "standards of practice" to guide the member States in technical matters in which some uniformity from State to State was urgently needed. As a result, on March 1, 1928, AASHO approved its first four standards which read as follows:

- That wherever practicable shoulders along the edges of pavements shall have a standard width of not less than 8 feet.
- That on pavements 10 feet shall be considered as the standard width for each traffic lane.
- That the crown of a two-lane concrete pavement shall be 1 inch.
- That no part of a concrete pavement shall have a thickness of less than 6 inches, and that all unsupported edges shall be strengthened. (6)

Hwy Design Standards in the U.S.

TABLE 1-1

Evolution of AASHTO (AASHO) Design Policies in the United States¹

A Policy on Highway Classification, September 16, 1938

A Policy on Highway Types (Geometric), February 13, 1940

A Policy on Sight Distance for Highways, February 17, 1940

A Policy on Criteria for Marking and Signing No-Passing Zones for Two and Three-Lane Roads, February 17, 1940

A Policy on Intersections at Grade, October 7, 1940

A Policy on Rotary Intersections, September 26, 1941

A Policy on Grade Separations for Intersecting Highways, June 19, 1944

A Policy on Design Standards-Interstate, Primary and Secondary Systems, 1945

Policies on Geometric Highway Design, 1950

A Policy on Geometric Design of Rural Highways, 1954

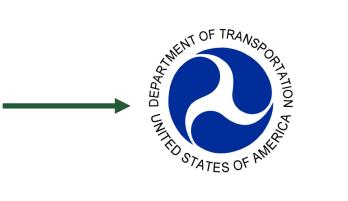
A Policy on Arterial Highways in Urban Areas, 1957

A Policy on Geometric Design of Rural Highways, 1965

A Policy on Design of Urban Highways and Arterial Streets, 1973

A Policy on Geometric Design of Highways and Streets, 1984

A Policy on Geometric Design of Highways and Streets, 1990


A Policy on Geometric Design of Highways and Streets, 1994

A Policy on Geometric Design of Highways and Streets, 2001

Hwy Design Standards in the U.S.

TITLE 23 - HIGHWAYS CHAPTER 1 - FEDERAL-AID HIGHWAYS

§ 109. Standards

- (a) In General.— The Secretary shall ensure that the plans and specifications for each proposed highway project under this chapter provide for a facility that will—
 - (1) adequately serve the existing and planned future traffic of the highway in a manner that is conducive to safety, durability, and economy of maintenance; and
 - (2) be designed and constructed in accordance with criteria best suited to accomplish the objectives described in paragraph (1) and to conform to the particular needs of each locality.

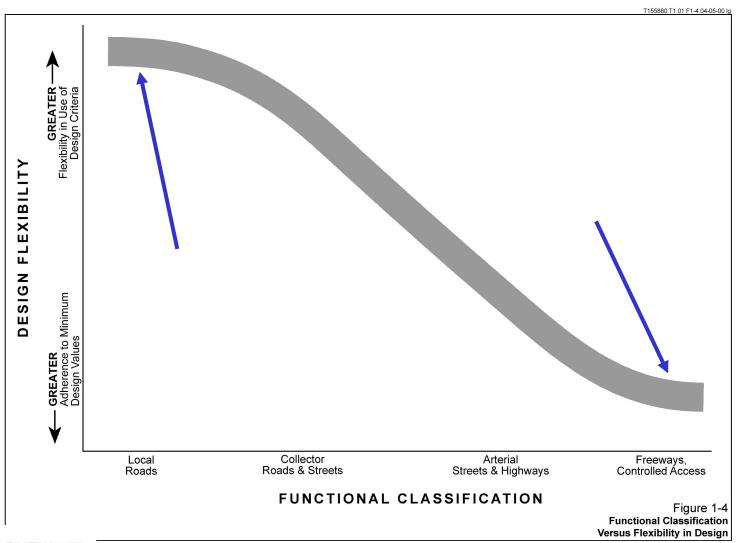
Federal Highway Administration, DOT

in the geometric and structural design of highways.

§625.2 Policy.

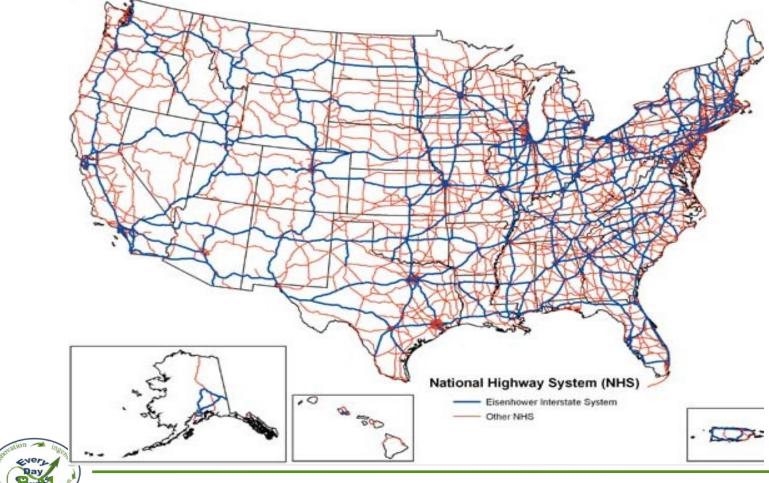
- (a) Plans and specifications for proposed National Highway System (NHS) projects shall provide for a facility that will—
- (1) Adequately serve the existing and planned future traffic of the highway in a manner that is conducive to safety, durability, and economy of maintenance; and
- (2) Be designed and constructed in accordance with criteria best suited to accomplish the objectives described in paragraph (a)(1) of this section and to conform to the particular needs of each locality.

FHWA Adopts AASHTO for NHS



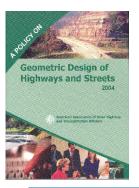
Defining the Function

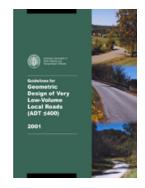
MOBILITY	Arterials • higher mobility • low degree of access			
	Collectors • balance between mobility and access			
LAND ACCESS	Locals • lower mobility • high degree of access			

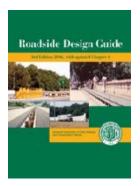

Functional Classification

FHWA Standards Only for NHS

(o) Compliance With State Laws for Non-NHS Projects.— Projects (other than highway projects on the National Highway System) shall be designed, constructed, operated, and maintained in accordance with State laws, regulations, directives, safety standards, design standards, and construction standards.




States Designate Standards Off NHS


State Roadway Design Manuals

The table below indicates the online location of State highway agency roadway design manuals, when available. If the design manual is not available online the URL listed is the State web site with other design information. If you are just looking for State Standard Drawings, see http://www.fhwa.dot.gov/programadmin/statestandards.cfm

State	URL
AL	Design Bureau's Engineering Support Section
AK	Standard Specs
AZ	Engineering Records Publications
AR	Arkansas State Highway & Transporation Department Info
CA	Highway Design Manual
CO	CDOT Design Guide 2005
СТ	Division of State Design
DE	Road Design Manual
DC	Design and Engineering Manual
FL	Designer Manuals
GA	GDOT Construction Standards & Details
Н	Highways - Design Branch
ID	Design Manual
IL	Bureau of Design & Environment Manual - 2002 Edition
IN	Design Manual
IA	Office of Design - Design Manual (.pdf)
KS	Standard Specifications for State Road and Bridge Construction
KY	Highway Design Manual
LA	Road Design Manual
ME	Contractor Information
MD	Rusiness Standards and Specifications

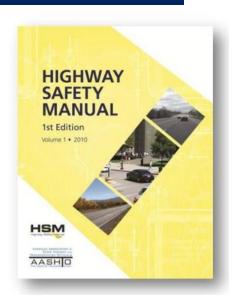
A Predictive Illustration...

All three of these meet design standards...

Source: CH2MHILL

but predictive analysis tells us they would perform very differently from a safety perspective.

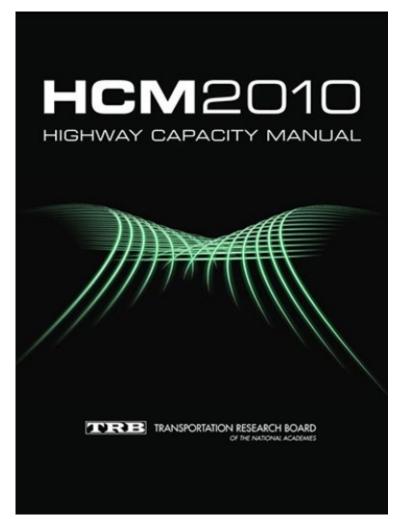
The EDC Data-Driven Safety Analysis Initiative...


 Goal: Integrate safety performance into <u>ALL</u> highway investment decisions

What is the HSM?

- A tool that applies an evidencebased technical approach to safety
- Provides reliable estimates of an existing or proposed roadway's expected safety performance.

- Helps agencies quantify the safety impacts of transportation decisions, similar to the way agencies quantify:
 - traffic growth
 - environmental impacts
 - traffic operations
 - pavement life
 - construction costs

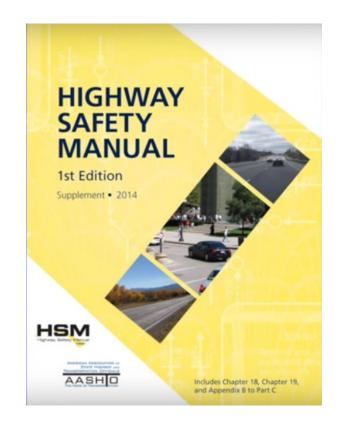

The Vision for the HSM

A Document Akin To the HCM...

Definitive; represents quantitative 'state-of-the-art' information

Widely accepted within professional practice of transportation engineering

Science-based; updated regularly to reflect research


AASHTO Highway Safety Manual, First Edition

2010 Release:

- Rural Two-Lane Roads
- Multilane Rural Highways
- Urban/Suburban Arterials

2014 Supplement:

- Freeway Segments
- Ramps
- Ramp Terminals

Highway Safety Manual Organization

Part A

Part B

Part C

Part D

Introduction, Human Factors & Fundamentals

Safety Management Process

Predictive Methods

Crash Modification Factors

HSM Companion Software

HSM Part	Supporting Tool
	AASHTOWare SafetyAnalyst
	Agile Assets Safety Analyst
PART B:	CARE
Roadway Safety	Numetric
Management	usRAP
Process	Vision Zero Suite
	Other commercial
	State-Developed
PART C:	HSM & ISATe Spreadsheets
Predictive Methods	IHSDM
PART D: CMFs	FHWA CMF Clearinghouse

Design Practice Involves Risk

- Two fundamental types of risk:
 - Risk of tort lawsuits arising from crashes alleged to be associated with a design ("Tort Risk")
 - Risk of the solution not performing as expected in terms of safety and operations ("Engineering Risk")

Tort Risk

- Adherence to criteria does not automatically prove <u>reasonable</u> <u>care</u>
- Deviation from criteria does not automatically prove <u>negligence</u>

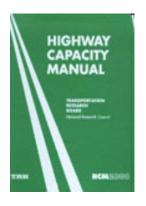
Tort Risk

 In most jurisdictions, the Court does not have authority to rule that the design decision was the "correct" choice

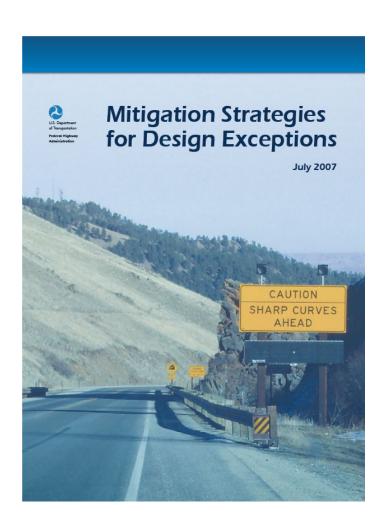
 The Court can only render judgment on whether the process was complete and whether the outcome was reasonable given the process

Meeting Design Criteria Important

- "Transportation agencies limit greatly the risk of a successful tort suit by focusing on design solutions that are proven, i.e., that are within current design guidelines and criteria".
- "Providing a nominally safe design is the first and major step toward minimizing tort risk".


NCHRP Report 480, A Guide to Best Practices for Achieving Context Sensitive Solutions

Engineering Risk



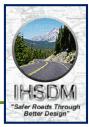
- How good (or poor) is the existing substantive safety performance?
- What should the long term safety performance of the roadway be?
- What is the difference in expected substantive safety if the exception is implemented?

Engineering Risk

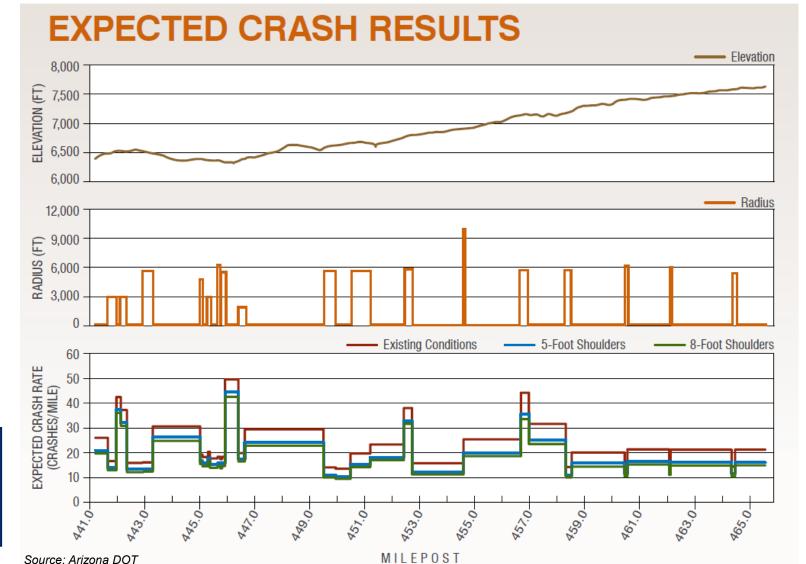
- What is the degree to which a standard is being reduced?
- Will the exception affect other geometric elements?
- What additional features will be introduced, (e.g., signing or delineation) that would mitigate the potential adverse effects of the exception?

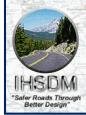
CSS Approach Helps Minimize Risk

- It is an unavoidable fact that DOTs face public and legal scrutiny for virtually all their actions.
- However, if a design team works closely with stakeholders, is creative within the bounds of good engineering practice, and fully documents all decisions, they will have gone a long way toward minimizing the risk associated with a future tort action should that occur


Parameters for Existing & Proposed Conditions:

 Used IHSDM to perform safety analysis

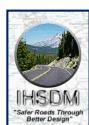

ROADWAY ELEMENT	HSM Base Condition	Existing SR 264 (1-Foot Shoulders)	Alternative A (5-Foot Shoulders)	Alternative B (8-Foot Shoulders)	
Lane width	12-Foot	12-Foot	12-Foot 12-Foot		
Shoulder width	6-Foot	1-Foot	5-Foot	8-Foot	
Shoulder type	Paved	Paved	Paved	Paved	
Roadside hazard rating	3	Varies (6 or 7 most frequent)	Varies (1 or 2 most frequent)	Varies (1 or 2 most frequent)	
Driveway density	≤ 5 per mile	Per survey & Holbrook District turnout database	Per survey & Holbrook District turnout database	Per survey & Holbrook District turnout database	
Horizontal curves: length, radius, and presence or absence of spiral transitions	None	Per best fit alignment	Per best fit alignment (match existing)	Per best fit alignment (match existing)	
Horizontal curves: Superelevation	None	Per as-builts & survey	Per as-builts & survey (match existing)	Per as-builts & survey (match existing)	
Grades	≤ 3%	Per as-builts & survey	Per as-builts & survey (match existing)	Per as-builts & survey (match existing)	
Centerline rumble strips	None	None	Present	Present	
Passing lanes	None	Per survey	Per survey (match existing)	Per survey (match existing)	
Two-way left-turn lanes			Per survey (match existing)	Per survey (match existing)	
Lighting	None	Present @ US 191 Intersection	Present @ US 191 Intersection (match existing)	Present @ US 191 Intersection (match existing)	
Automated speed enforcement	· None		None	None	



Source: Arizona DOT

Plot of Geometric Features and Expected Crashes

Crash Prediction Results

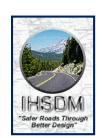

Expected Crash Frequency by Severity: 2016–2036

Source: Arizona Department of Transportation, Traffic Safety Evaluation Report

Alternative	Total Crashes	Fatal and Injury Crashes	Property Damage Only Crashes	Reduction in Total Crashes over Existing Conditions	Percent Reduction
No Build	636.4	283.4	353.0	_	_
Alternative A	531.6	230.5	301.1	104.8	16.5
Alternative B	504.2	216.8	287.4	132.2	20.8
Only Superelevation Improvements	635.3	282.7	352.6	1.1	0.2

IHSDM Safety Analysis:

- Model was un-calibrated as used (not necessary for comparative alternatives analysis)
- Alternative B (8-ft shoulders) would reduce crashes
 by 4 percent more than Alternative A (5-ft shoulders)


Benefit to Cost Ratio: Design Alternatives

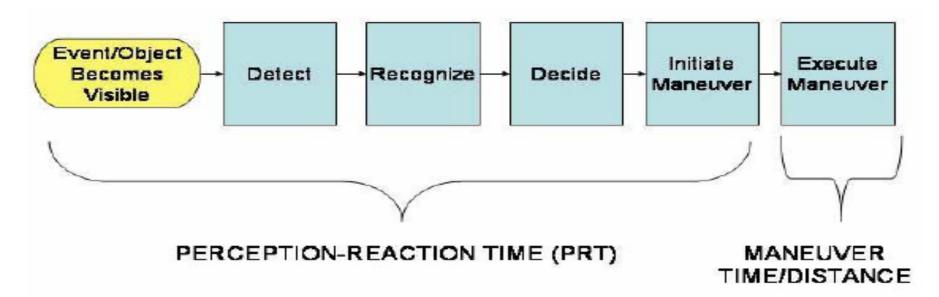
Alternative	Annual Benefit	Annual Cost	Benefit/Cost Ratio
Alternative A	\$3,873,681	\$1,680,561	2.30
Alternative B	\$5,084,207	\$2,678,713	1.90
Superelevation Improvements	\$41,807	\$135,464	0.31

Source: Arizona Department of Transportation, Traffic Safety Evaluation Report

Economic analysis:

 Although Alternative B (8-ft shoulders) could provide the greater benefit in reduction in fatal and injury crashes, Alternative A (5-ft shoulders) would provide the greater return on investment and was selected as the preferred alternative.

Example – Stopping Sight Distance (SSD)


Distance required to perceive an object in roadway and bring vehicle to a stop

"... the sight distance at every point along a roadway should be at least that needed for a below-average driver or vehicle to stop."

AASHTO Green Book Chapter 3

SSD Conceptual Model

SSD = perception reaction distance + braking distance

SSD =
$$1.47 \text{ V } t + (1.075 \text{ V}^2 / \text{ a})$$

V = design speed in mph

t = percept reaction time (2.5 sec)

 $a = deceleration rate (11.2 ft/sec^2)$

SSD Conceptual Model

SCHEMATIC SHOWING THE PERCEPTION-REACTION TIME AND MANEUVER TIME COMPONENTS OF SIGHT DISTANCE

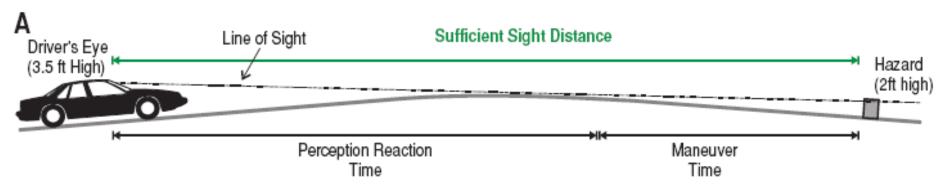


Diagram A: The hazard is visible to the driver far enough away that there is sufficient distance for the driver to recognize and react to the hazard and to complete the maneuver necessary to avoid it.

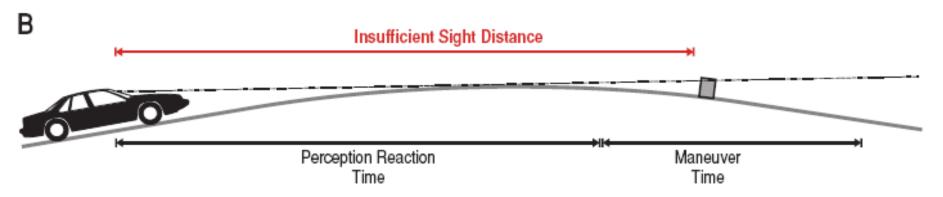


Diagram B: Because of the steeper vertical crest, the driver's sight distance is shorter than in Diagram A making it possible for a hazard to be hidden from sight until there is insufficient distance to avoid it.

*Note: distances not to scale

SSD Design Values

	Stopping sigh	nt distance	US Customary						
			Design		Stoppi	ing sigh	nt dista	nce (ft)
speed	Calculated	Design	speed	Do	wngra	des	U	pgrade	35
(mph)	(ft)	(ft)	(mph)	3 %	6 %	9 %	3 %	6 %	9 %
15	76.7	80	15	80	82	85	75	74	73
20	111.9	115	20	116	120	126	109	107	104
25	151.9	155	25	158	165	173	147	143	140
30	198.7	200	30	205	215	227	200	184	179
35	246.2	250	35	257	271	287	237	229	222
40	300.6	305	40	315	333	354	289	278	269
45	359.8	360	45	378	400	427	344	331	320
50	423.8	425	50	446	474	507	405	388	375
55	492.4	495	55	520	553	593	469	450	433
60	566.0	570	60	598	638	686	538	515	495
65	644.4	645	65	682	728	785	612	584	561
70	727.6	730	70	771	825	891	690	658	631
75	815.5	820	75	866	927	1003	772	736	704
80	908.3	910	80	965	1035	1121	859	817	782

From Exhibit 3-1, AASHTO Green Book

From Exhibit 3-2, AASHTO Green Book

Level Terrain

SSD on Grades

SSD Design Values

	Stopping sigh	nt distance	US Customary						
			Design		Stoppi	ing sigh	nt dista	nce (ft)
speed	Calculated	Design	speed	Do	wngra	des	U	pgrade	35
(mph)	(ft)	(ft)	(mph)	3 %	6 %	9 %	3 %	6 %	9 %
15	76.7	80	15	80	82	85	75	74	73
20	111.9	115	20	116	120	126	109	107	104
25	151.9	155	25	158	165	173	147	143	140
30	198.7	200	30	205	215	227	200	184	179
35	246.2	250	35	257	271	287	237	229	222
40	300.6	305	40	315	333	354	289	278	269
45	359.8	360	45	378	400	427	344	331	320
50	423.8	425	50	446	474	507	405	388	375
55	492.4	495	55	520	553	593	469	450	433
60	566.0	570	60	598	638	686	538	515	495
65	644.4	645	65	682	728	785	612	584	561
70	727.6	730	70	771	825	891	690	658	631
75	815.5	820	75	866	927	1003	772	736	704
80	908.3	910	80	965	1035	1121	859	817	782

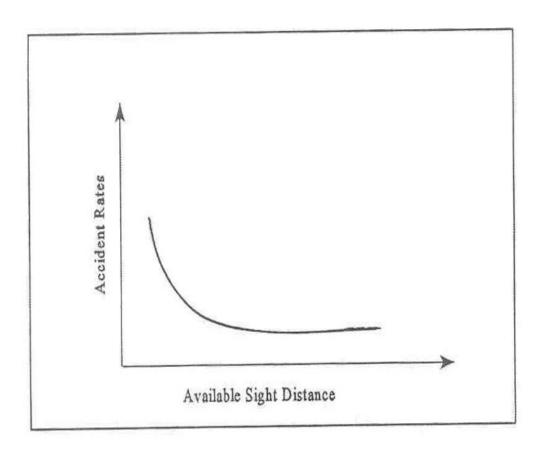
From Exhibit 3-1, AASHTO Green Book

From Exhibit 3-2, AASHTO Green Book

Level Terrain

SSD on Grades

SSD Design Recommendations


"Stopping sight distances exceeding those shown in Exhibit 3-1 should be used as the basis for design wherever practical. Use of longer stopping sight distances increases the margin of safety for all drivers ..."

"The recommended stopping sight distances are based on passenger car operations and do not explicitly consider design for truck operation."

AASHTO Green Book

Conceptual Safety Relationship?

Past studies that examined the relationship between SSD and safety have been inconsistent and inconclusive

Figure 4. Conceptual Relationship Between Available Sight Distance and Safety at Crest Vertical Curves

NCHRP 400

Conceptual Safety Relationship?

Parameters	1940 A Policy on Sight Distance for Highways	1954 A Policy on Geometric Design - Rural Highways	1965 A Policy on Geometric Design - Rural Highways	1971 A Policy on Geometric Design of Highways and Streets	1984 and 1990 A Policy on Geometric Design Highways and Streets
Design Speed	Design Speed	85 to 95 percent of design speed.	80 to 93 percent of design speed.	Min 80 to 93 percent of design speed. Des design speed.	Min 80 to 93 percent of design speed. Des design speed.
Perception - Reaction Time	Variable: 3.0 sec at 30 mph 2.0 sec at 70 mph	2.5 sec	2.5 sec	2.5 sec	2.5 sec
Design Pavement/ Stop	Dry Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop
Friction Factors	Ranges from 0.50 at 30 mph to 0.40 at 70 mph	Ranges from 0.36 to 30 mph to 0.29 to 70 mph	Ranges from 0.36 to 30 mph to 0.27 at 70 mph	Ranges from 0.35 at 0.30 mph to 0.27 at 70 mph	Slightly higher at higher speeds than 1970 values
Eye Height	4.5 N	4.5 ft	3.75 ft	3.75 ft	3.5 ft
Object Height	4.0 in	4.0 in	6.0 in	6.0 in	6.0 in

Conceptual Safety Relationship?

There are a number of factors or conditions associated with driver responses to a hazardous event or object that are not reflected in the basic sight distance model, but nonetheless can have a profound effect on driver behavior and overall roadway safety:

- Conditions or events that occur prior to a hazardous event/object becoming visible to the driver
- · How and when the driver processes relevant information
- · Driving as an "episodic" activity versus driving as a "smooth and continuous" activity
- The nature of the hazardous object or event
- The nature of the driver's response
- Individual differences across drivers
- The quality and applicability of the empirical research used to develop the driver models

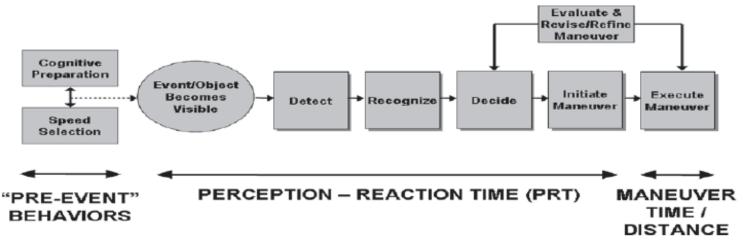


Figure 22-2. Added elements to basic sight distance behavioral model.

Risk Assessment Guidelines

- Assess the risk of a location with SSD below current criteria. Risk is related to traffic volume (exposure) and other features within the sight restriction (intersections, narrow bridges, highvolume driveways, sharp curvature)
- "Where no high-risk features exist with the sight restriction, nominal deficiencies as great as 5-10 mph may Page 59 not create an undue risk of increased crashes."

Guide for Achieving Flexibility in Highway Design AASHTO

Questions & Answers

John McFadden, P.E. john.mcfadden@dot.gov

