ANALYSIS OF INCIDENT INJURY SEVERITY ON NJ ROADWAYS

Presenter: Rima Abisaad New Jersey Institute of Technology NJDOT Annual Research Showcase October 17, 2018

OUTLINE

- Introduction
- Background/Objective
- Data Acquisition
- Methodology
- Results
- Conclusions

INTRODUCTION

- In 2015, motor vehicle crashes were the leading cause of death for ages 16 through 23 in the United States
- In 2016, more than 37,000 persons were killed in crashes across the United States
- Beside injury levels, normal flow of traffic is disrupted due to such crashes

INTRODUCTION

Understanding safety problems

Solving them with data-driven decisions

Crash prediction models

BACKGROUND

- Previous research examined crash injury severity using different approaches such as:
 - Poisson Lognormal Regression models
 - Negative Binomial Distribution
 - Zero-inflated Poisson and zero-inflated Negative Binomial models
- The stochastic nature of crashes is poorly described by linear functions
- Other models are explored such as **Artificial Neural Network** (ANN)

ANN (Artificial Neural Networks) CHARACTERISTICS

CRASH FACTORS

OBJECTIVE

The objective of this study is to **develop a ANN model for Crash Injury Severity prediction** that considers:

- Roadway characteristics
- Traffic volume and speed
- Environmental conditions
- Time characteristics

DATA ACQUISITION

* Data for a total of 5,926 crashes was collected on NJ freeways.

METHODOLOGY

- By adopting several forms of ANN, this study aims to identify the best model suitable for predicting crash injury severity.
- The 37 ANNs differ by the following criteria:
 - Туре
 - Training algorithm
 - Activation function
 - Number of input neurons, and
 - Input parameters

METHODOLOGY

Identify potential independent variables

Select structure of ANN

Configure network and initialize weights

Train and test the network

METHODOLOGY

The model is evaluated by calculation of the **Root Mean Square Error** (RMSE) as follows:

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (\widehat{y}_i - y_i)^2}{N}}$$

where:

- " \hat{y}_i " is the observed values for i^{th} data
- " y_i " is the estimated ANN values for i^{th} data
- "N" is the number of data points

RESULTS

Best performing ANN characteristics:

- Deep-Feed Forward
- 15 input neurons including weighted speed variance
- Resilient Backpropagation training algorithm
- Logistic activation function.

ANN DEVELOPMENT

The input layer consists of combinations of the following independent variables:

- Time (Day of the week, Month, Time of the day
- Alcohol involvement
- Road characteristics
- Median type
- Light conditions
- Environmental conditions
- Posted speed limit
- Pavement condition
- Crash type
- Traffic volume
- Normal speed and crash speed
- Weighted speed variance

	Property damage probability										
ТМС	Timestamp										
	4:00	6:00	8:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00	
1											
2											
3											
4											
5											

LOWEST

APPLICATION

- Predict potential injury severity level given real-time information.
- Produce injury severity heat maps.
- Show different colors depending on risk
- Identify most dangerous segments prone to fatality and/or injury.

SENSITIVITY ANALYSIS

ТМС	Injury probability/Weekday										
	Timestamp										
	4:00	6:00	8:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00	
1											
2											

ТМС	Injury probability/Weekend										
	Timestamp										
	4:00	6:00	8:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00	
1											
2											

SENSITIVITY ANALYSIS

- I. Fatalities and injuries are more likely to occur on weekends.
- 2. Injuries and fatalities happen mostly during the day.
- 3. Under adverse weather conditions, fatality and injury rates are lower.

SENSITIVITY ANALYSIS

- 4. Higher posted speed limit, as well as higher travelling speeds more likely lead to fatal crashes.
- 5. As traffic volume increases, the fatality probability decreases.
- 6. As speed variance increases, fatality possibility increases.

RESEARCH OPPORTUNITIES

RESEARCH OPPORTUNITIES

- Increase safety service patrol coverage (Maryland CHART, Pennsylvania IF)
- Explore crowdsourced data (Connected Citizens Program)
- Implement stricter speed rules/ Dynamic speed limits

CONCLUSIONS

- The model uses weighted speed variance as an important variable affecting the output.
- The model separates fatality crashes, and the ability to accurately predict fatality probability is not common in the literature and is a substantial contribution of this model.
- The multiplicity and stochastic nature of crash factors make it challenging to predict crash injury severity.

QUESTIONS ?