Evaluating the Impact of Activated Carbon on the Engineering Properties of Cement-Stabilized Contaminated Dredged Sediment

Robert Miskewitz
(rmiskewitz@envsci.rutgers.edu)

Lauren Iacobucci
(lauren.iacobucci@rutgers.edu)
Solidification/stabilization (SS) of dredged sediment for beneficial reuse

Challenges:

• Contaminant mobility
• Highly organic sediment \rightarrow reduced strength

Potential solution:

• Portland cement (PC) +
• Powdered activated carbon (AC)
Material - Overview

NY/NJ Harbor – United States

Stavanger Harbor – Norway
Material - Physical Properties

Physical Properties of the Sediment

<table>
<thead>
<tr>
<th></th>
<th>Erie Basin</th>
<th>Brooklyn Navy Yard</th>
<th>Port Elizabeth</th>
<th>Stavanger 19</th>
<th>Stavanger 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>G_s</td>
<td>2.67</td>
<td>2.62</td>
<td>2.68</td>
<td>2.69</td>
</tr>
<tr>
<td>Natural water content</td>
<td>w_n (%)</td>
<td>187</td>
<td>237</td>
<td>213</td>
<td>326</td>
</tr>
<tr>
<td>Natural organic content</td>
<td>OM (%)</td>
<td>9.5</td>
<td>9.2</td>
<td>8.9</td>
<td>20.3</td>
</tr>
<tr>
<td>Grain size distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel (%)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>2.0</td>
<td>1.5</td>
<td>2.2</td>
<td>62.9</td>
<td>23.7</td>
</tr>
<tr>
<td>Silt and Clay (%)</td>
<td>98.0</td>
<td>98.5</td>
<td>97.8</td>
<td>31.8</td>
<td>75.1</td>
</tr>
<tr>
<td>Bulk density</td>
<td>ρ_m (g/cm3)</td>
<td>1.27</td>
<td>1.24</td>
<td>1.24</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Stavanger 19 Sediment

Particle Size Distribution
Experimental Method

Experimental Mix Designs (Dry Mixing Ratios)

<table>
<thead>
<tr>
<th>Mixture ID</th>
<th>Portland Cement, PC (% wet wt. of sediment)</th>
<th>Activated Carbon, AC (% wet wt. of sediment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0%PC + 1%AC</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0%PC + 3%AC</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4% PC*</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8% PC</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8%PC + 1%AC</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8%PC + 3%AC</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>12% PC*</td>
<td>12.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Mixes created for Stavanger Harbor sediment (Stavanger 19 and Stavanger 29) only

- Dry mixes due to high natural moisture content
- Quikrete Type I/II cement + powdered activated carbon
- Cured for 28 days @ 20°C
Experimental Method

Homogenization of sediment prior to mixing

Filled molds, sealed and ready for curing

Thermocure II water bath curing box
Experimental Method

- Triplicate samples tested for unconfined compressive (UC) strength after 28 days

- Duplicate samples from broken cores extracted for PAHs via the Synthetic Precipitation Leaching Procedure (SPLP)
Geotechnical Results - UC Strength

Sample undergoing UC testing on ELE device

STV 19 and STV 29 samples during UC tests

Left: sample still inside mold
Center: sample removed from mold but untested
Right: broken sample after testing
Geotechnical Results - UC Strength

28-Day Unconfined Compressive Strength

Unconfined compressive strength (kPa)

Sediment Source

- Erie Basin
- Brooklyn Navy Yard
- Port Elizabeth
- Stavanger 29
- Stavanger 19

Legend:
- 4% PC
- 8% PC
- 8% PC + 1% AC
- 8% PC + 3% AC
- 12% PC
Geotechnical Results - UC Strength

Selected for SPLP leachate analysis based on initial total solids concentrations of PAHs.
Environmental Results - SPLP

Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)

- Pyrene
- Naphthalene
- Phenanthrene
- 2-Methylnaphthalene

Mixture IDs: 0% PC, 0% PC + 1% AC, 0% PC + 3% AC, 4% PC, 8% PC, 8% PC + 1% AC, 8% PC + 3% AC, 12% PC

SPLP Extracted Concentration (µg/L)
Environmental Results - SPLP

Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)
Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)

- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Benzo(a)pyrene
- Benzo(ghi)perylene
- Indeno(1,2,3-cd)Pyrene
- Dibenz(a,h)anthracene

Mixture ID:
- 0% PC
- 0% PC + 1% AC
- 0% PC + 3% AC
- 4% PC
- 8% PC
- 8% PC + 1% AC
- 8% PC + 3% AC
- 12% PC

SPLP Extracted Concentration (µg/L)
Environmental Results - SPLP

### Chemical compound	Max. Average Leachate Concentration (μg/L)	NJ Class II-A Ground Water Criterion (μg/L)
2-Chloronaphthalene | 0.006 | 600
2-Methylnaphthalene | 0.07 | 30
Acenaphthene | 0.03 | 400
Acenaphthylene | 0.009 | -
Anthracene | 0.02 | 2,000
Benz(a)anthracene | 0.004 | 0.05
Benzo(a)pyrene | **0.007** | **0.005**
Benzo(b)fluoranthene | 0.01 | 0.05
Benzo(ghi)perylene | 0.009 | -
Benzo(k)fluoranthene | 0.007 | 0.5
Chrysene | 0.004 | 5
Dibenzo(a,h)anthracene | **0.004** | **0.005**
Fluoranthene | 0.04 | 300
Fluorene | 0.03 | 300
Indeno(1,2,3-cd)Pyrene | 0.008 | 0.05
Naphthalene | 0.2 | 300
Phenanthrene | 0.1 | -
Pyrene | 0.08 | 200
Conclusions

1. The addition of powdered activated carbon (PAC) produced 26% and 34% average decreases in the UC strength development of S/S sediment for doses of 1% and 3% PAC, respectively.

2. PAC can reduce the mobility of contaminants in a Portland cement (PC) stabilized matrix.

3. Optimized mixtures of PC and PAC can be used to effectively treat unique sediment conditions via S/S.

4. Samples containing 0% PC (three of the eight designed mixes) were unable to be tested for unconfined compressive strength due to their inability to hold shape outside of the plastic mold structure.

5. It is anticipated that the high water content of the Stavanger Harbor materials – especially that of STV29 – contributed to the low UCS values observed after 28 days.
Questions?

Robert Miskewitz
(rmiskewitz@envsci.rutgers.edu)

Lauren Iacobucci
(lauren.iacobucci@rutgers.edu)