

RUTGERS

Center for Advanced Infrastructure and Transportation

A U.S. Department of Transportation University Transportation Center

Evaluating the Impact of Activated Carbon on the Engineering Properties of Cement-Stabilized Contaminated Dredged Sediment

> Robert Miskewitz (rmiskewitz@envsci.rutgers.edu)

Lauren lacobucci (lauren.iacobucci@rutgers.edu)

Background

Solidification/stabilization (SS) of dredged sediment for beneficial reuse

Challenges:

- Contaminant mobility
- Highly organic sediment → reduced strength
- Potential solution:
 - Portland cement (PC) +
 - Powdered activated carbon (AC)

Material - Overview

NY/NJ Harbor – United States

Stavanger Harbor – Norway

Material - Physical Properties

		Erie Basin	Brooklyn Navy Yard	Port Elizabeth	Stavanger 19	Stavanger 29
Specific gravity	G _s	2.67	2.62	2.68	2.69	2.46
Natural water content	w _n (%)	187	237	213	326	160
Natural organic content	OM (%)	9.5	9.2	8.9	20.3	8.0
Grain size distribution	Gravel (%)	0.0	0.0	0.0	5.2	1.2
	Sand (%)	2.0	1.5	2.2	62.9	23.7
	Silt and Clay (%)	98.0	98.5	97.8	31.8	75.1
Bulk density	ρ _m (g/cm³)	1.27	1.24	1.24	1.32	1.19

Physical Properties of the Sediment

Stavanger 19 Sediment

Particle Size Distribution

Experimental Method

Experimental Mix Designs (Dry Mixing Ratios)

Mixture ID	Portland Cement, PC (% wet wt. of sediment)	Activated Carbon, AC (% wet wt. of sediment)
Raw material	0.0	0.0
0%PC + 1%AC	0.0	1.0
0%PC + 3%AC	0.0	3.0
4% PC*	4.0	0.0
8% PC	8.0	0.0
8%PC + 1%AC	8.0	1.0
8%PC + 3%AC	8.0	3.0
12% PC*	12.0	0.0

* Mixes created for Stavanger Harbor sediment (Stavanger 19 and Stavanger 29) only

- Dry mixes due to high natural moisture content
- Quikrete Type I/II cement + powdered activated carbon
- Cured for 28 days @ 20°C

Experimental Method

Homogenization of sediment prior to mixing

Filled molds, sealed and ready for curing

Thermocure II water bath curing box

Experimental Method

Triplicate samples tested for unconfined compressive(UC) strength after 28 days

Duplicate samples from broken cores extracted for PAHs via the Synthetic Precipitation Leaching Procedure (SPLP)

Geotechnical Results - UC Strength

Sample undergoing UC testing on ELE device

STV 19 and STV 29 samples during UC tests

Left: sample still inside mold Center: sample removed from mold but untested Right: broken sample after testing

Geotechnical Results - UC Strength

28-Day Unconfined Compressive Strength

Geotechnical Results - UC Strength

28-Day Unconfined Compressive Strength

Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)

Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)

Leachate Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs)

Chemical compound	Max. Average Leachate Concentration (μg/L)	NJ Class II-A Ground Water Criterion (μg/L)
2-Chloronaphthalene	0.006	600
2-Methylnaphthalene	0.07	30
Acenaphthene	0.03	400
Acenaphthylene	0.009	-
Anthracene	0.02	2,000
Benz(a)anthracene	0.004	0.05
Benzo(a)pyrene	0.007	0.005
Benzo(b)fluoranthene	0.01	0.05
Benzo(ghi)perylene	0.009	-
Benzo(k)fluoranthene	0.007	0.5
Chrysene	0.004	5
Dibenz(a,h)anthracene	0.004	0.005
Fluoranthene	0.04	300
Fluorene	0.03	300
Indeno(1,2,3-cd)Pyrene	0.008	0.05
Naphthalene	0.2	300
Phenanthrene	0.1	-
Pyrene	0.08	200

Conclusions

- The addition of powdered activated carbon (PAC) produced 26% and 34% average decreases in the UC strength development of S/S sediment for doses of 1% and 3% PAC, respectively.
- 2. PAC can reduce the mobility of contaminants in a Portland cement (PC) stabilized matrix.
- 3. Optimized mixtures of PC and PAC can be used to effectively treat unique sediment conditions via S/S.
- 4. Samples containing 0% PC (three of the eight designed mixes) were unable to be tested for unconfined compressive strength due to their inability to hold shape outside of the plastic mold structure.
- It is anticipated that the high water content of the Stavanger Harbor materials – especially that of STV29 – contributed to the low UCS values observed after 28 days.

RUTGERS

Center for Advanced Infrastructure and Transportation

A U.S. Department of Transportation University Transportation Center

Questions?

Robert Miskewitz (rmiskewitz@envsci.rutgers.edu)

Lauren lacobucci (lauren.iacobucci@rutgers.edu)