FEATURE CORE INNOVATION AREA (CIA) TEAM PRESENTATION:

CIA TEAM INFRASTRUCTURE PRESERVATION

NJDOT – Bob Signora FHWA – John Miller Presented by: Robert Blight Supervising Engineer, NJDOT Pavement & Drainage Management

PAVEMENT PRESERVATION ON HIGH TRAFFIC VOLUME ROADWAYS – WHEN, WHERE & HOW?

NJ State Transportation Innovation Council (STIC) Summer Meeting, June13, 2018

ACKNOWLEDGEMENTS

- Susan Gresavage, Executive Manager, NJDOT PDM&T
- Pavement & Drainage Management & Technology

PAVEMENT PRESERVATION ON HIGH TRAFFIC VOLUME ROADWAYS – WHEN, WHERE & HOW?

Combination of STIC Innovations

- Pavement Preservation (When and Where)
- Pavement Preservation (How)
- Guidelines for the Preservation of High-Traffic-Volume Roadways (R26)
- Small "Pieces" to larger "Puzzle" at NJDOT
 - Asset Management
 - Pavement Preservation Program
 - 2004 present

PAVEMENT PRESERVATION PROGRAM

2000 - 2004

- "Worst First" Resurfacing Approach
- Used a hammer for most jobs
- Mill 2" Asphalt and Pave 2" Asphalt
- Not many "tools in the toolbox"
- No dedicated funding for "pavement preservation"

Where we started...

NJDOT PAVEMENT PRESERVATION PROGRAM

2018 NJDOT TAMP submitted to FHWA

2017 USDOT Finalized TAMP & PM Rules

- 2015 USDOT Refined AM (FAST) & NJDOT Increased Pavement Preservation Funding
- 2012 USDOT Initiated AM (MAP-21)(NHS)

 2007 NJDOT Adopted AM (SHS) & Line Item for Pavement Preservation in STIP

2005 NCPP/FHWA Preservation Technical Appraisal

2004 NJDOT Merged Pavement Management with Pavement Design

PAVEMENT PRESERVATION ON HIGH-TRAFFIC-VOLUME ROADWAYS – WHEN, WHERE & HOW?

- NJDOT is headed in the right direction
 - Pavement Preservation Program is very robust!!
 - The 3 STIC initiatives assist with
 - Documentation
 - Benchmarking
 - Evaluation/Analysis
 - Making some improvements
 - Training
 - Validation

NJDOT PAVEMENT PRESERVATION AND ASSET MANAGEMENT

• Economy of Pavement Preservation

Condition	Treatment	Treatment Life	Cost
Good-Fair	Pavement Preservation	5-10+ years	\$75-250K/LM
Fair-Poor	Minor Rehab & Resurfacing	10+ years	\$300-350K/LM
Poor	Major Rehab & Reconstruction	10+ years	\$750K-1M+/LM

 Pavement management system recommends \$100M+ annual preservation program

Good = |R| < 95 and $SD| \ge 3.5$

 $Poor = |R| > 170 \text{ or } SD| \le 2.4$

Fair = Everything in between

PRESERVATION PROJECT SELECTION

- Time based (4-8 year window)
- Assess condition and performance
- Select specific preservation treatment based on
 - Road type
 - Condition
 - Traffic volumes
 - Other unique project characteristics

NJ State Highway System Annual Preventive Maintenance Pavement Investment

Millions

NJ State Highway System Lane Miles of Major Pavement Work Completed (Total System Mainline Lane Miles = 8542)

HIGH PERFORMANCE THIN OVERLAY (HPTO)

- "Work Horse" of preservation program
- Applicable for NJ highest ADT roadways
- 1 inch thick Surface Course
 - High quality 4.75mm NM Aggregate
 - Polymer modified asphalt binder PG 64-22E or better
 - Can be used for leveling when required in lifts 0.5 inch to 1.5 inch thick

WHAT IS HPTO?

- HPTO must meet mixture performance requirements
 - Texas Overlay Crack
 Tester
 - Cycles > 600 in OT
 - Asphalt Pavement Analyzer Rut Tester
 - Rut < 4mm in APA

2,800 Cycles

HPTO PAY ADJUSTMENT

Table 902.08.03-1 Performance Testing Pay Adjustments for HPTO				
Test	Requirement	Test Result	PPA	
APA @ 8,000 loading cycles, mm (AASHTO T 340)	5.0 maximum	t ≤ 5.0 5.0 < t ≤ 12.0 t > 12.0	0 -50(t-5)/7 -100 or Remove & Replace	
Overlay Tester, cycles (NJDOT B-10)	600 minimum	t ≥ 600 600 > t ≥ 400 t < 400	0 -(600-t)/4 -100 or Remove & Replace	

HPTO ADVANTAGES

- Can improve ride quality (IRI) **significantly**
- Seals out water
- Renew road surface
- Quick open to traffic
- Minimal to zero RAP

HPTO ADVANTAGES

- Placed with a conventional paver or <u>ultra-thin paver</u>
- Excellent life extension (12+ years) = durability
 - Mill 2" pave 2" w/ HMA = 8 years average life
- Low tire noise
- Improves skid resistance (SN = 50)
- Applicable to all roadways

ULTRA-THIN FRICTION COURSE (UTFC)

- ¾ inch thick Thin Bonded Hot Mix Asphalt (HMA) Overlay
 - Like Novachip (but not proprietary)
- 4.9 6.0 % polymer modified (PG 64E-22) asphalt binder
- Volumetric Mix Design Requirements
- 9.5 mm nominal maximum size high quality aggregate
 - Gap/open graded HMA
 - Flakiness Index (cubicle aggregate)

WHAT IS UTFC?

- Spray paver
- Self priming paver
- Polymer Modified
 Emulsified Asphalt Tack
 Coat
 - CRS 1P

ULTRA-THIN FRICTION COURSE VIDEO

Link for video

ULTRA-THIN FRICTION COURSE

- Benefits:
 - Improvement in ride quality
 - Improves wet weather skid resistance/spray
 - Seals out water
 - Renew road surface
 - Quick open to traffic (300 feet!!)

ULTRA-THIN FRICTION COURSE

- Benefits:
 - Minimal milling = minimal to zero rap
 - Placed with spray paver
 - Ensures <u>superior bond</u> with existing pavement
 - No tracking tack coat by HMA trucks!!
 - Great performance when designed and constructed properly (Rt.195 WB, 2000)

Cold applied mixture of:

- Polymer modified asphalt emulsion (CQS-1hP)
 - SB, SBS, SBR or natural latex
- High quality aggregate
- Mineral filler
- Water
- Additives

- Capable of being spread in variable cross-sections:
 - Wedges
 - Ruts
 - Longitudinal joints micropaving joints
 - Scratch or intermediate layer
 - Surface treatment
- Typically applied at 20 lbs/SY aggregate + 0.35 gallons/SY asphalt emulsion

- A System high quality aggregate and emulsion compatibility and consistency is vital
- Should maintain a skid-resistant surface (high wet friction coefficient)
- Type 2 (ISSA)
 - ¼" nominal maximum aggregate size

MICRO-SURFACING/SLURRY EQUIPMENT

- Types:
 - Truck mounted
 - Continuous paver
- Mixing Equipment
- Proportioning Devices
- Spreading Equipment
- Support equipment

Figure 6.3 Flow Diagram of a Typical Slurry Seal Mixer

MICROPAVING LONGITUDINAL JOINTS

MICRO-SURFACING / SLURRY SEAL VIDEO

Link for video

- Benefits:
 - Maintains existing ride quality
 - Improves skid resistance
 - Seals out water
 - Renew road surface
 - Quick open to traffic
 - Minimal to zero rap
 - 25-40% of the cost to mill and pave

CHIP SEAL

Asphalt binder application

- 0.40 0.65 gallons/SY
- Polymer modified asphalt emulsion
- Crumb rubber modified
- High quality aggregate application immediately following the asphalt binder
 - 6.25 9.5 mm (1/4 3/8 inch) aggregate size
 - Clean and cubicle

CHIP SEAL

Asphalt "Glue" + Stone "Chip"

Compaction "Seating"

CHIP SEAL – VACUUM SWEEPING

CHIP SEAL

- Benefits:
 - Maintains ride quality but no improvement
 - Seals out water
 - Durable
 - Fast renewal road surface
 - Quick open to traffic

CHIP SEAL

- Benefits:
 - Improves skid resistance
 - Minimal to zero rap
 - Ease of construction
 - Historically the **most** cost effective thin overlay treatment

FOG SEAL

- Mixture of asphalt emulsion and water
 - SS-1h, CSS-1h, or CQS-1h
 - Other proprietary products available
- Applied with asphalt distributor (0.06-0.10 gallons/SY)
 - Higher application rates with light sand
- Light sand application (0.25 to 0.5 lbs./sy)
 - Skid resistance

FOG SEAL

FOG SEAL WITH LIGHT SANDING

- RE should base acceptance on visual inspection
 - Proper coverage
 - Fog seal emulsion
 - Sand
 - Random sampling and testing of emulsion

FOG SEAL

- Benefits:
 - Maintains ride quality but no improvement
 - Seals out water
 - Preserves surface
 - Quick open to traffic
 - Zero RAP
 - Pennies on the dollar

MICRO-MILLING

- Finest milling available = Ideal for Thin Preservation Treatments
- Maintain elevations where necessary
 - Transitions for thin overlays beginning and end of treatment
 - Bridge approaches
 - Bridge vertical underclearance
- Ride quality improvement

MICRO-MILLING

- RE acceptance based on
 - Texture depth using sand patch test (ASTM E 965)
 - 4mm maximum allowable
 - Visual inspection
 - Ride quality if micro-milling will be final riding surface

QUALITY MICRO-MILLING

- Provides better bonding for thin preservation treatments
- Smoothest surface of milling
- Can be used as a final riding surface
- Ideal milling for thin preservation treatments

SUCCESSES+CHALLENGES+OPPORTUNITIES = LESSONS

- Weather Limitations
 - 50-60°F and rising
 - Dry pavement with no precipitation forecasted
- Limitations to some thin surface treatments
 - Slurry seal, micro-surfacing, chip seal, fog seal (cape seal?)
 - May not be suitable for **some high traffic volume**, truck traffic, turning movements
 - Higher tire noise than HMA
 - No ride quality improvement
 - Customer satisfaction??

- Initial appearance may be very "shiny"
 - High asphalt content mixtures = durability
 - Skid resistance may initially be low
 - Will improve after a few months of traffic
 - Light sand application has been used to improve skid

- Some treatments may slightly impact roadway geometry
- HPTO, UTFC, Cape Seal require ADA compliance
- Micro-milling required in floodway at affected stream crossings (no fill)
- Resetting, recasting, and reconstructing inlets and manholes, curb and driveways as needed

• Removal of all unsound material

Bond is critical for <u>ALL</u> thin overlays

- tack coat spec. needs updating
- Construction sampling in progress
- Some <u>ultra-thin paver HPTO</u> projects next year
- Trackless tack coat
- Bond/shear/pull test study in progress

- Treatments in combination working very well
 - Thin HMA overlay over slurry seal
 - HPTO over slurry seal
 - UTFC over slurry seal
 - Cape seal = slurry seal over chip seal (SHRP 2 R26 best performance)

- Specifications a work in progress
 - Constantly improving materials specifications
 - HPTO rutting issues
 - UTFC aggregate
 - Constantly improving construction practices
 - Maintenance bond?
 - Considering it

LESSONS LEARNED - HPTO

- HPTO = Best Performance = Most frequently used preservation treatment
- Performance Rutgers preliminary performance study shows that treatment timing is critical
 - SDI < 2.4 = 5 years service life
 - SDI > 2.4 = 13+ years service life
- Good performance on composite pavements
 - Composite is approx. 60% of network
 - HPTO = Reflective Crack Resistant
- Used in combination with slurry seal scratch course

- Aggregate shape and gradation is <u>critical</u> to success
 - Improper aggregate = premature failure
 - Aggregate crushing operation is critical
 - Refined specification to more clearly indicate mix design requirements
- Tack coat bond is critical
 - Under application or poor coverage = premature failure
 - Improper tack coat material = premature failure

LESSONS LEARNED - UTFC

- Overall thin overlay treatments are performing as well as or better than mill 2" + pave 2" HMA
- Pavement condition must = <u>FAIR/GOOD</u> condition for preservation

CHALLENGES/THREATS

- Agency
 - Staffing, training/knowledge gap
 - Lack of quality assurance
- Design
 - Retool for quicker delivery
 - Better manage SOW (Environmental, ADA, Safety/Guiderail, ITS)
 - Document/Guidance Right treatment on right road
- Industry
 - Build industry capabilities, comfort, capacity
 - Resistance to change
 - Lack of quality control
- Manage Customer Expectations
 - Public Outreach and Communication
 - Treatment failures

"Right Mix, On the Right Road, At the Right Time, for the Right Cost"

Source: NJDOT Pavement Management

WHY PAVEMENT PRESERVATION?

NJDOT Pavement & Drainage Management & Technology Team THANK YOU! QUESTIONS? ROBERT BLIGHT, SUPERVISING ENGINEER ROBERT.BLIGHT@DOT.NJ.GOV