RUTGERS								
More than a Pretty Face(ade): Meeting Safety & Historic Requirements in Concrete Barriers								
PI	Hani Nassif, PE, PhD. ¹							
Co-PIs	Malcolm H. Ray, PE, PhD. ² Chuck A. Plaxico, PhD. ²							
Researchers	Andrew Wassef ¹ Dan Su, PhD. ³ Chaekuk Na, PhD. ¹ ¹ Rutgers University, NJ ² RoadSafe LLC, ME ³ Lamar University, TX Monday, July 17, 2017							

RUTGERS Outline
1. Background and Objectives
2. Finite Element Modeling
3. Experimental Setup
4. Full-Scale Testing
5. Model Validation
6. Conclusions
2

RUTGERS Research Objectives

Research Objectives

- Provide an open balustrade design that would meet the requirements from both the Historic Preservation Office (HPO) (Aesthetics) and the Federal Highway Administration (FHWA) (Safety).
- Develop a finite element (FE) model using LS-DYNA for crash test simulation, and conduct a parametric study to optimize the open balustrade design.
- Calibrate and Validate the Finite Element Model using LS-DYNA in accordance with NCHRP Report W179: Procedures for Verification and Validation of Computer Simulations Used for Roadside Safety Applications

Rut	GERS Intro	oduction	and		Proble	m Sta	itement			
> Cra	ash Testing	Criteria								
🗆 NCH	RP Report 350 (19	93) and NCHRP	Proje	ct 2	2-14 (2002)					
🛛 On Jo	anuary 1, 2011 AA	SHTO MASH we	as ado	pte	d by the FH	WA				
🗆 Belo Repo	w is a table of the ort 350 and MASH	6 AASHTO MAS TL-4 test paran	SH test neters	: le	vels and a co	omparison	of NCHRP			
The S	SUT impact sever	ity has a large in	crease	e b	etween NCH	IRP 350 ar	nd MASH			
□ The small car and pickup truck collisions do not change much										
Test Level	Vehicle	Velocity	Angle		Parameter	NCHRP 350	AASHTO MASH			
TL-1	1100C (passenger car) 2270P (pickup truck)	31 mi/hr [50 km/hr] 31 mi/hr [50 km/hr]	25° 25°		Vehicle Mass	8,000 kg	10,000 kg			
TL-2	1100C (passenger car)	44 mi/hr [70 km/hr]	25°	5	Impact Verocity	15°	15°			
	2270P (pickup truck)	44 mi/hr [70 km/hr]	25°		CG height of ballast	63 in	67 in			
TL-3	2270P (pickup truck)	62 mi/hr [100 km/hr] 62 mi/hr [100 km/hr]	25°	٩	Vehicle Mass	2,000 kg	2,270 kg			
TL-4	1100C (passenger car)	62 mi/hr [100 km/hr]	2.5°	r S	Impact Velocity	62 mph	62 mph			
	2270P (pickup truck)	62 mi/hr [100 km/hr]	25°	Ē	Impact Angle	25°	25°			
	10000S (single-unit truck)	56 mi/hr [90 km/hr]	15°	g.	Vehicle Mass	820 kg	1,100 kg			
TL-5	1100C (passenger car)	62 mi/hr [100 km/hr]	25°	all	Impact Velocity	62 mph	62 mph			
	36000V (tractor-van trailer)	50 mi/hr [80 km/hr]	15°	Sm	Impact Angle	20°	25°			
TL-6	1100C (passenger car)	62 mi/hr [100 km/hr]	20°							
	2270P (pickup truck)	62 mi/hr [100 km/hr]	25°							
L	300001 (tractor-tanker trailer)	50 mi/nr [80 km/hr]	15°				7			

Finite Element Modeling

> Parametric Study: SUT Height Comparison Results

The rolling in the 44 inch barrier was contained on the traffic side of the barrier and did not lean over like the other two

RUTGERS

- Because it did not lean, it was deflected back into the lane faster
- In the 42 and 43 inch cases, the rear tires hit the barrier and begin the rolling "tripping" motion, but when the height is increased to 44 inches, the box hits and the vehicle is better contained

Result: 44 inches

RUTGERS **Finite Element Modeling** Parametric Study: SUT Post Width and Window Opening Comparisons **D** Because the 10 inch post width is larger than the 8 inch one, and the better looking 8 inch post already delivers the required capacity, there is no need to simulate the 10 inch post barriers. **Two post width and barrier combinations will** be tested with the 44 inch high barrier: > 8 inch post width with a 6 inch window opening (left) 10P-8W 8 inch post width with an 8 inch window opening (right) 8P-8W 8P-6W 12

RUTGERS Full-Scale Crash Testing]
 MASH Test 4-12 • Collided 5 ft upstream of first open-joint Speed = 57.4 MPH (MASH 56 MPH) Angle = 15.3 degrees (MASH 15 degrees) Vehicle was successfully contained and re 	directed
	26

RUTGERS			RS Model Validation	Model Validation		
≻	Va	lid	ation Procedure			
	The	ere a	re three steps to perform when validating a crash scenaric):		
1. Solution			ution Verification			
		a)	Ensures the model is stable			
		b)	Verifies that all laws of physics are upheld			
	2 .	Val	idating Time-History curves according to NCHRP Report w179			
		a)	Compares curves based on Sprague-Geers magnitude, phase, and comprehensive (MPC) metrics			
		b)	Compares curves using ANOVA metrics			
		c)	Calculations are performed using the Roadside Safety Verification and Validation Program (RSVVP)			
3.		Ph	enomena Importance Ranking Tables (PIRT)			
		a)	Ensures the peak values for occupant risk criteria and vehicle behavior are in good agreement			
After all steps return an affirmative result, the model is a validated		ll steps return an affirmative result, the model is considered	38			

RUTGERS Summary of Deliverables

> Summary

- □ All three crash tests at TL-4 were successfully performed and met the criteria set forth in MASH.
- □ The team has modified the truck models as well as the barrier model to reflect the actual test setup.
- □ The team has finished the validation of crash scenarios with test data for all three crash tests.
- □ The team submitted a request to FHWA for barrier approval (expected soon)

42

