22nd Annual NJDOT Research Showcase

The 22nd Annual NJDOT Research Showcase was an opportunity for the New Jersey transportation community to learn about the broad scope of academic research initiatives underway and share technology transfer activities being conducted by institutions of higher education partners and their associates.  The annual event serves as a showcase to present the ongoing initiatives and benefits of the NJDOT Research program. This event was also the first Research Showcase conducted by webinar with sessions held from 9am-12pm on October 27, 28, and 29, 2020.

Each day's Research Showcase Program included presentations by university researchers, NJ agency representatives, and engineers offering their perspectives and fielding questions on topics including responses to the challenge of weather and climate change, emerging technologies such as smart mobility, and the effects of Covid-19 on transportation networks. These presentations were followed by poster sessions presenting research of students attending New Jersey’s universities and colleges.


On Day 1, the NJDOT Commissioner of Transportation, Diane Gutierrez-Scaccetti, provided opening remarks along with the Federal Highway Administration's Assistant Division Administrator in New Jersey, Valeriya Remezova. Both speakers noted NJDOT’s steps taken and plans for the future to promote resiliency.

A recording of the Day 1 presentations can be found here and to the right.

The keynote speaker was Gerald E. “Jerry” Buckwalter, Chief Operating and Strategy Officer of the American Society of Civil Engineers who presented the “ASCE Future World Vision.” Mr. Buckwalter described the ASCE role in imagining the future of cities, incorporating rapid developments in technology, alternative energy, climate change, materials, policy and funding, and demographics and urbanism. The project created five interactive scenarios of multi-dimensional city and neighborhood systems to adapt to changes over the next fifty years. These visions are intended to engage youth in thinking about engineering, spark public interest, provide a visual starting point for discussion, encourage cross-disciplinary collaboration and create a common language, and to foster innovation among university students.

Keynote presentation by Gerald E. Buckwalter, Chief Operating and Strategy Officer, American Society of Civil Engineers. Click for pdf

Amanda Gendek, Manager, NJDOT Bureau of Research announced several awards given in recognition of research, innovation and implementation efforts.  Below is a listing of the award winners presented at this year's showcase:

  • 2020 Outstanding University Student in Transportation Research Award – Laura Marques Soarces, Rutgers University (Energy Harvesting on New Jersey Highways)
  • 2020 NJDOT Research Implementation Award – Yusuf Mehta, Rowan University (Environmental Impacts of Recycled Asphalt Pavement)
  • 2020 Best Poster Award – Thales Couto Braguim, Rutgers University (Load Rating, Analysis, and Monitoring of the Sagging Fascias Girder of I-287 Bridge over US202/206) LINK
  • 2020 NJDOT Build a Better Mousetrap Award – Scott Ainsley and Mark Crago (Anti-Jacknife Device)

The Build a Better a Mousetrap Award was given to Scott Ainsley and Mark Crago in NJDOT’s Operations Training Unit for their Anti-Jacknife Device. They developed this early warning device to prevent jackknifing and damage to trucks and trailers during new employee CDL training. The device increases cost savings by eliminating the need for repairs, and improves efficiency during new employee training (see videos below).


On Day 2, research presentations focused on resiliency themes, the economic impacts of Covid-19 on maritime trade and port commerce, and emerging smart mobility technologies.

A recording of the Day 2 presentations can be found here and to the right.




The Effect of Covid-19 on the Port Industry – Global Trends & Regional Effects, Sotiris Theofanis, PhD and Maria Boile, PhD (Rutgers University) LINK

Enhancing Resilience of Bridges through Real-time Deformation Monitoring using UWB Technology Enhanced by Machine Learning, Yiming Liu (Stevens Institute of Technology) LINK

Coming Soon: NJDOT Flood Risk Visualization Tool, Jon Carnegie, AICP, PP (Rutgers University) LINK

New Jersey’s Climate Change Resilience Strategy, Dave Rosenblatt, Assistant Commissioner (New Jersey Department of Environmental Protection) LINK

New Brunswick Innovation Hub Smart Mobility Testing Ground Phase 1 Planning, Peter J. Jin, PhD and Ali Maher, PhD (Rutgers University) LINK

Improving Resilience, Safety, and Service Life of the Pulaski Skyway, Ruben Gajer, PE (Arora and Associates, PC) LINK


On Day 3, research presentations covered several topics, including transportation-related health stressors relationship on Covid-19 and energy, durability, mobility and safety topics in transportation.

A recording of the Day 3 presentations can be found here and to the right.





Exploring the Impacts of VMT induced PM2.5 on the Rate of COVID-19 Infection, Yeganeh Hayeri, PhD and Hojat Behrooz (Stevens Institute of Technology) LINK


Energy Harvesting from Roadways and Bridges: Opportunities and Challenges, Hao Wang, PhD (Rutgers University)

Behavior of Concrete Barriers for Bridges in New Jersey, Anil Agrawal, PhD (The City College of New York) LINK

Accelerating Mobility for All: Analysis of Focus Group Feedback from Persons with Disabilities Following Autonomous Vehicle Rides, Cecilia Feeley, PhD and Andrea Lubin (Rutgers University) LINK


Development and Evaluation of a Realtime Truck Detection Method Using Deep Learning Based Object Recognition Techniques for Truck Parking Information System, Joyoung Lee, PhD (New Jersey Institute of Technology)

Automated Analysis of Surrogate Safety Measures and Non-compliance Behavior of all Road Users at an Intersection, Deep Patel and Mohammad Jalayer, Ph.D (Rowan University) LINK


Each day students and researchers at New Jersey’s colleges and universities presented posters describing their methods and findings on ongoing and recently completed research and responded to questions by attendees. (Click on images for links to posters.)

Optimized Speed Profiles for Sustainable Train Operation with Regenerative Braking – Leon Allen and Steven Chien, NJIT

Load Rating, Analysis, and Monitoring of the Sagging Fascia Girder of I-287 Bridge over US202/206 – Thales Couto Braguim, Rutgers University

Process-Based Modeling for Inlet Management – Jon K. Miller, Laura Lemke, Matthew S. Jannsen, Stevens Institute of Technology

Control of Shrinkage Cracks in Bridge Decks by Using Hybrid Fiber Reinforced High Performance Concrete – Mina Habib

Load Rating/Posting Policy for SHVs and EVs and Reliability Assessment of SHV Load Models – Chan Yang, Peng Lou, Chaekuk Na, Dongjian Gao, Rutgers University

Effects of Thixotropic UHPC on Interfacial Properties as an Overlay – Jiang Du, Weina Meng, Adi Abu-obeidah, Hani Nassef, Stevens Institute of Technology

Implementation of Porous Concrete in Sidewalks in New Jersey – Kathleen Stavole, Jack Cannon, Luke Dragon, Hardik Yagnik, Husam Najm, Rutgers University

Climate Change Impact on Pavement Overlay Performance with Adaptation Strategies – Xiaodan Chen, Rutgers University

Thermally and Mechanically Balanced Structural Design of Insulated Pavements for Cold Region Applications – Zhuang Zhuo, Ayman Ali, Cheng Zhu, Yusuf Mehta, Wade Lein, Christopher DeCarlo, Zhaoxing Xie, Rowan University & the US Army Corps of Engineers

The 22th Annual NJDOT Research Showcase was organized and sponsored by the NJDOT Bureau of Research in partnership with the New Jersey Local Technical Assistance Program (NJLTAP) at Rutgers Center for Advanced Infrastructure and Transportation (CAIT) and co-sponsored by the Federal Highway Administration.

NJDOT’s Traffic Incident Management Training Program

NJDOT’s Traffic Incident Management Program offers training and resources to improve the coordinated response to traffic incidents. Source: NJTIM website

NJDOT’s New Jersey’s Traffic Incident Management (TIM) program consists of a planned and coordinated multi-disciplinary process to detect, respond to, and clear traffic incidents so that traffic flow may be restored as safely and quickly as possible after an incident. According to the 2015 State of New Jersey Traffic Incident Management Strategic Plan, about half of all traffic congestion is caused by temporary, one-time occurrences, such as crashes, disabled vehicles, spilled cargo, highway maintenance and reconstruction, adverse weather, and planned special events. These occurrences reduce roadway capacity, disrupt the normal operation of the transportation system, increase the risk of secondary crashes, and result in lost time and productivity, increased cost of goods and services, negative impacts on air quality and the environment, and reduced quality of life and motorist satisfaction.

Training classes include incident resolution exercises. Source: NJTIM website

Training classes include incident resolution exercises. Source: NJTIM website

By reducing the duration and impact of traffic incidents, effective traffic incident management practices improve the safety of crash victims, other motorists, and emergency responders. TIM practices are designed to reduce the time to detect, respond to, investigate, and safely clear the incident, to safely manage personnel and equipment at the site, provide timely and accurate information to the public, and to manage affected traffic until normal conditions are restored. Stakeholders in the Traffic Incident Management program include federal, state, and local agencies and private sector partners including emergency medical services (EMS), fire and rescue, law enforcement, transportation agencies, medical examiners and coroners, hazardous materials contractors, towing and recovery, emergency management, public safety communications, and traffic information media.

The FHWA’s Every Day Counts (EDC) program, in cooperation with the second Strategic Highway Research Program (SHRP2), offered the first national traffic incident management process and training program as an innovation under EDC-2 in 2013-2014. First offered in 2010, NJDOT’s classes in TIM predated the FHWA EDC initiative. The NJ TIM Responder Training provides interactive, hands-on incident resolution exercises to help participants learn to coordinate incident response activities and optimize operations in the field. The training supports development of a unified practice among all stakeholders. NJDOT has continued to train in TIM during the pandemic and, as of September 1, 2020, the program has trained 29,798 incident responders.

NJDOT and the ITS Resource Center at NJIT have updated the NJTIM website. Source: NJTIM website

NJDOT and the ITS Resource Center at NJIT have updated the NJTIM website. Source: NJTIM website

In alignment with the 2015 Strategic Plan, NJDOT and the ITS Resource Center at the New Jersey Institute of Technology, developed the NJ TIM website in 2016 to provide support to the TIM program. Recently, they have modernized the website through the addition of new content, including videos and other resources such as case studies and training recaps. A schedule of virtual trainings, and registration for individual and group training, are available. The website provides links to the Strategic Plan and Safety Guidelines for Emergency Responders, as well as contact information for all federal, state, county, and local law enforcement agencies operating in the state.

Video screenshot of hazard display message received by motorists. Source: NJDOT

Through EDC-4, FHWA promoted the use of data to improve traffic incident management. NJDOT is increasingly looking to technology to improve safety at incident sites. A pilot study looked at the effectiveness of using connected vehicle technology on 32 safety service vehicles to alert drivers to the presence of safety service patrol (SSP) workers via the mobile navigation app Waze. NJDOT established a Computer-Aided Dispatch (CAD) Integration Working Group to develop a plan for CAD integration among New Jersey agencies and other organizations. Using the OpenReach system, NJDOT has implemented the FHWA key performance measures: roadway clearance time; incident clearance time; and number of secondary crashes. Traffic incident management data sharing between the NJDOT and law enforcement systems is expected to decrease incident response times, properly capture the incident timeline, and improve the traffic incident management process. More information on these efforts can be found at the NJDOT Technology Transfer website.

Lunchtime Tech Talk! WEBINAR: Analysis of Local Bus Markets

On October 7, 2020, NJDOT hosted a Lunchtime Tech Talk! Webinar on the Analysis of Local Bus Markets with Deva Deka, Ph.D., Assistant Director, Research, at Rutgers – Alan M. Voorhees Transportation Center, and Susan O’Donnell, Senior Director, Business Analysis and Market Research at NJ TRANSIT. Dr. Deka began the presentation with a general description of the NJ TRANSIT system that operates approximately 250 bus routes throughout New Jersey. Bus riders constitute almost 60 percent of all riders using NJ TRANSIT services, including commuter rail and light rail. For many New Jersey residents, those buses are essential for meeting almost all daily travel needs.

Dr. Deka provided a profile of the demographics of bus users, including household income, race, and vehicle ownership

Dr. Deka provided a profile of the demographics of bus users, including household income, race, and vehicle ownership.

For the past five years, the Alan M. Voorhees Transportation Center of Rutgers University has been conducting onboard surveys of bus riders in different parts of New Jersey for projects funded by the NJDOT Bureau of Research and sponsored by NJ TRANSIT. Dr. Deka, the Principal Investigator for these survey studies, presented the bus survey methodology, and key findings. He described the questionnaire design, survey scheduling, training of surveyors, and the process of data collection, and the post-survey process that has involved data cleaning and weighting, and analysis. Over the five years, the project has generated clean data for over 15,000 riders.

Dr. Deka gave an overview profile of bus rider characteristics and trip characteristics found from the survey research. The survey showed that riders are predominantly Hispanic and/or African-American, lower-income, from households with no car or one car, and dependent on the bus system. The data support the essentiality of bus services for zero-car households and inform analyses of the broader impacts of bus services such as decreases in traffic delays and reductions in greenhouse gas emissions.

In the second half of the presentation, Ms. O’Donnell described the use of the survey data by NJ TRANSIT for planning purposes. The data supports travel demand modeling which replicates existing conditions and predicts future conditions to inform roadway projects and transit projects. This information is shared with New Jersey’s three Metropolitan Planning Organizations, the Port Authority of New York and New Jersey, and the New York Metropolitan Transportation Council. Current data is required in transit grant applications, and contributes to studies related to access to transit, corridors, intermodal systems, and transit oriented development.

To fulfill the agency’s obligations under Title VI of the Civil Rights Act of 1964, NJ TRANSIT uses the data to perform an equity analysis to evaluate the effect of fare changes or service changes on low-income populations and minority populations, and to provide data to help in developing a language assistance plan for Limited English Proficiency populations.

In addition, NJ TRANSIT uses the data when working with advertisers that want to target their message efficiently to specific demographic groups.

The agency’s Newark Bus System Redesign Project will use the data collected in fall 2019 to align and modify bus routes and explore service to new areas. This is the first, and largest, of multiple systems to be evaluated to bring the agency’s entire bus system up to date.

In closing, Ms. O’Donnell presented an update on bus use during the pandemic based on surveys given during April and June. The data shows how important the bus system has been to essential workers.

Following the presentation, the Dr. Deka and Ms. O’Donnell responded to questions asked through the chat feature:

Q. What was the number of questions asked on the survey and what incentives were offered?
A. The survey comprised about 30 questions. Incentives helped increase interest in the surveys and respondents had a chance of winning 1 of 5 $100 gift cards.

Q. Did you consider using IPads rather than paper-based intercept surveys?
A. Dr. Deka noted that they did consider them, but use of IPads limits the number of surveys that can be collected at one time. The surveyor has to stay with the individual using the IPad, and cannot approach other riders at the same time, limiting the efficiency of the survey-taker. Dr. Deka also referenced a Mineta Transportation Institute report that compared data quality and costs for different approaches to on-board transit passenger surveys that found efficiencies with the paper-intercept approach for bus users. Ms.O’Donnell noted that this technology might work at a station or on a platform because a number of surveyors can be located in the same place but is difficult to use on a crowded bus. During the pandemic, IPads probably could not be used due to safety concerns with touching and handling equipment.

Q. What are typical variables used to weight the data to the total ridership?
A. The sample is weighted by direction of the bus, time of day, and the run. A trip is from an origin to the destination and all trips combined is a run. They do not weight the sample by demographic variables or geography because they do not have solid information on the total transit user “universe” population related to these variables.

Q. Did you compare rider survey results by types of service area?
A. No. While there are some suburban routes if you segment or categorize by origins, such as Morristown, almost all routes are generally very urban. It would be possible to use the data to compare by counties.

Q. What is the delay imposed by traffic congestion on buses?
A. Traffic impacts have been an issue that has been looked at by traffic engineers at Rutgers – CAIT some years ago. They collected data traffic signal timings at intersections that the bus traveled through and applied VISSIM for simulations. Dr. Deka said that he could connect anyone interested with the detailed technical methods that the researchers used on that traffic impact study, if they’re interested.

The presentation given by Dr. Deka and Ms. O'Donnell can be downloaded here

A recording of the webinar is also available (see right).

Federal Highway Administration Releases Third EDC-5 Progress Report

FHWA has released the latest report card for Every Day Counts (EDC)-5 innovation deployment status among state Departments of Transportation. The goal of the EDC program is rapid technology transfer and accelerated deployment of innovation across the country. The program seeks to develop a culture of innovation through shared best practices, data, specifications, case studies, and success stories. The report card depicts the implementation stage (Not Implementing, Development, Demonstration, Assessment, Institutionalized) for each innovation by state. Detailed information on NJDOT’s work on these Innovative Initiatives can be found here.

FHWA recently announced the next two-year round of innovations, EDC-6. Work on these innovations will begin in January 2021. Information on the seven innovations promoted in this round can be found here.

A-GaME: Avoiding Unforeseen Costs on Transportation Projects Through Early Detection of Subterranean Obstacles

The Federal Highway Administration is encouraging State Departments of Transportation to utilize A-GaME, one of the agency’s Every Day Counts (EDC-5) innovations, to mitigate risks and improve reliability of geotechnical site characterization with proven, effective exploration methods and practices.

NJDOT used a drone to safely photograph the full extent of the soil erosion

NJDOT used a drone to safely photograph the full extent of the soil erosion

This article is a summary of an interview with New Jersey Department of Transportation (NJDOT) employees with expertise in engineering and geology from Geotechnical Engineering and Engineering Geology. The interview was held with Kim Sharp (Supervising Engineer, Geotechnical Engineering), John Jamerson (Project Engineer, Engineering Geology), and Amanda McElwain (Principal Engineer, Engineering Geology) to discuss how NJDOT utilizes A-GaME methods for its projects and the benefits these methods provide.

Q:  What is A-GaME?

A-GaME is an acronym for “Advanced Geotechnical Methods of Exploration” that encompasses a relatively new set of techniques for subsurface exploration that provides a more complete understanding of an area’s geotechnical and geological properties. In short, these techniques allow engineers to “see” what’s underground during a project’s design phase.

A-GaME techniques include the following processes:

Tools of the trade: sledgehammer, striking plate, and sensors are used to measure seismic vibrations through soil

Transportation projects typically use soil borings to collect soil samples, which are then tested in labs to determine the soil properties (e.g., water content, water depth, soil type, etc.) that will inform project design and construction. A-GaME techniques supplement soil borings and can more accurately identify obstructions, bedrock, and other soil conditions that could cause construction delays. They can also detect more subtle changes in soil conditions than conventional bore holes or penetration tests.

Q: Which of these methods has NJDOT used? Have they been successful?

Each A-GaME method yields benefits. The key is to find the right method for each project. NJDOT has utilized A-GaME methods in the preliminary design and design phases of several projects. In these projects, the results of the exploration have benefited project design and construction. Some of the more prominent examples of NJDOT’s use of A-GaME include:

  • Seismic Piezocone and P-S seismic logging techniques for the Pulaski Skyway seismic retrofitting of foundations. Consultants used these techniques in their site-specific seismic response analyses to derive shear wave velocity correlations and discover the various layers and depths of fill, organics, sands, clays, glacial till, and bedrock composition. This information allowed the engineers to determine how to retrofit each foundation to withstand a seismic event.
  • Mapping talus deposits – that is, collected rockfall piles – over bedrock on Route 80.
  • Microgravity surveys have been used in mine investigations. Northern New Jersey has several abandoned mines, and these surveys have provided safer and more complete methods to map and assess the structural integrity of these mines and inform remedial strategies.
  • Seismic methods were also used on another project near the Delaware Water Basin to measure the depth of talus deposits. Seismic activity was monitored from the road vibrations and the waves were measured at various points around the deposit to determine the locations of voids and the pile’s overall depth.
  • Mapping of rock joints for bridge foundation design along Route 4. Mapping the locations of the fractures in the rock allowed the design team to place the bridge foundations in structurally sound locations based on the competency of the rock mass. The process assisted in determining the long-term stability of the rock mass, the rippability (ease of excavation) and constructability of the mass, possible excavation angles, and the potential need for additional support.
  • Bathymetry Survey has been used in waterways upstream and downstream of structures on navigable waterways to provide river bottom elevation cross sections. This technique was used on the Pulaski Skyway project to reveal images of debris that had fallen off ships into the Hackensack River and could present issues during construction of the proposed foundation seismic retrofitting. The information saves time and money in the construction phase by alerting contractors to obstructions that will need to be removed.
  • Geophysical explorations have been used for finding shallow surface and river bottom debris, utility installations, and mapping existing bridge footing configurations underwater.
  • LiDAR survey has been used for site investigation on rock faces on a few projects during design.
  • Optical and acoustic tele-viewers have been used some down hole in soil borings to characterization of rock and any open voids.
  • Single Station Passive Seismic Survey (SSPSS) has been used to differentiate weathered rock from bedrock using ambient vibrations. Determining the interface between weathered rock and competent bedrock is essential, whether it is for rock slope stability, excavation concerns (mechanical or blasting), or foundations. SSPSS helped determine if the top layer was comprised of weathered rock, or if the top layer was comprised of loose boulders with lots of air-space in between.
  • Drones have been used in emergency situations to investigate large slope failures and to inform design on rockfall mitigation projects. On I-287, a drone equipped with a high-resolution camera was able to take photographs and videos revealing a broken drainage pipe that was contributing to erosion that required immediate remediation. This was safer and more cost effective than utilizing a team of workers to investigate. On I-280 and I-287, drones have also been used for rockface mapping and early site characterization as a design tool.

The source driver impacts the source, like a hammer striking a nail, and generates a wave. The pressure waves and seismic waves are recorded by the geophones as they travel through the fluid and soil walls.

The source driver impacts the source, like a hammer striking a nail, and generates a wave. The pressure waves and seismic waves are recorded by the geophones as they travel through the fluid and soil walls.

Q: Who determines which method to use, and who does the exploration?

Our office, in collaboration with design consulting firms, determines the most appropriate new technology methods for each project. The right method is largely determined by the type of project and its location. For example, projects that cross rivers may rely on sonar, LiDAR, or tomography to assess the conditions under the water and on the river’s slopes. On the other hand, a project in the mountains may require seismic methods of subsurface exploration because the steep slopes and rocky terrain make conventional testing impossible.

NJDOT often utilizes these methods during a project’s design phase to be proactive in reducing the risks and costs associated with underground soil conditions during construction. Some of these methods are also useful in emergency situations.

NJDOT sources A-GaME work to a small group of contractors that have knowledge on how to use the highly specialized and expensive equipment required to perform the tests, and the skilled, specialty trained personnel to conduct the tests and interpret the data. NJDOT and local governments rely upon private industry contractors to perform these specialized services; in fact, the geophysical firms themselves may not own the specialty equipment (e.g., seismographs, etc.), but will rent it out as needed due to the high costs of ownership. When we develop the boring program, the prime design consultant firm will often contract with a specialty geophysical firm. Sometimes the geophysical firm will be hired by the drilling contractor.

Q: You just said that these methods can be expensive, but isn’t an important benefit of these methods to save money?

A-GaME techniques tend to have a higher up-front cost, but these methods save money over the life of a project through risk reduction. When designers, DOTs, and contractors have a better understanding of the issues that could arise due to subterranean conditions (e.g., bedrock, air voids, old storage containers, abandoned mines), the project can account for these conditions rather than discovering them during the construction phase.

In the design phase, A-GaME methods can provide information to ensure that foundations are not overdesigned, or are appropriate for rocky terrain, and can improve constructability over the life of the project – which can deliver cost savings.  Overall, these techniques reduce costs associated with construction delays, change orders, and litigation.

In some environments, projects on mountainous terrain for example, the cost of soil borings can be very high to mobilize equipment, so supplementing borings with geophysical techniques brings the project cost down.

The information about soil known by traditional boring methods. Source: Minnesota DOT

The information about soil known by traditional boring methods. Source: Minnesota DOT

Q: What knowledge, skills, and abilities are needed to advance the use of A-GaME at NJDOT?

Delivering the specialized equipment, skills, and education needed for A-GaME are currently outside the capabilities and day-to-day responsibilities of NJDOT’s Geotechnical Engineering Department. Testing methods are complicated, and the resulting data often require the analyst to have a PhD in Geology.  The degree of specialization warrants the need for outsourcing the work to specialty contractors who would regularly perform these functions and hone their expertise.  Engineers entering the profession would not necessarily have had sufficient exposure to these techniques at the undergraduate level.

However, NJDOT staff have been going on-site when the specialty contractors perform work on NJDOT projects to learn more about these methods and climb the learning curve. When DOT staff have more knowledge about the methods, the odds of advancing their use in future projects increases.

Q:  What are some challenges to A-GaME’s deployment?

From an engineering perspective, all of the design firms need to become aware that there are lots of methodologies available to analyze and obtain soil and rock properties for better, and sometimes more efficient and cost-effective, designs of our foundations and rock slopes.  We work with firms of varying capacities including some less experienced firms with little awareness of the methods.  There are also some firms that would be interested in implementing these services on select projects, but until recently were not sure that NJDOT was open to their use, such as for rock work.

Information provided by ERI imaging is much more thorough. Source: Minnesota DOT

Information provided by ERI imaging is much more thorough. Source: Minnesota DOT

NJDOT project management teams also can be resistant to spending the extra up-front money for this type of testing and analysis. Soil boring drilling contractors do not want to work in tandem with geophysical firms because they have to wait for the firms to get out there and complete their work; for example, there are peripheral costs and scheduling uncertainties related to use of optical or acoustical televiewer work. The drilling contractors do not want to be idle while the geophysical work is being performed.  They want reliability as to when work will be completed so they can quickly move on to the next job.  So, we have found that fewer drilling contractors may actually bid on the job if they have to work in tandem or accommodate the geophysical firm services.  This can drive the bid costs up.

Q:  What are the next steps for A-GaME?

NJDOT and most other DOTs are still learning about A-GaME methods and their applications. The next step for NJDOT’s adoption of A-GaME is to continue to spread knowledge of these methods and encourage their use to supplement traditional boring techniques.

NJDOT’s Bridges and Structures Design Manual is being updated and, as part of the revision process, Geophysical Testing has been added to the new Sections 25 and 26.  While FHWA still must review these and other revisions to the Manual before it is made available to the public, the inclusion of A-GaME in the manual should eventually increase the awareness and use of these innovative methods among consultants. New innovative techniques are being added in the subsurface contract language as well.

Knowing where you will encounter bedrock is very helpful for excavation or drilling. You cannot get a complete picture such as this from bore samples. Courtesy of Jeff Reid, Hager-Richter Geoscience, Inc.

Knowing where you will encounter bedrock is very helpful for excavation or drilling. You cannot get a complete picture such as this from bore samples. Courtesy of Jeff Reid, Hager-Richter Geoscience, Inc.

NJDOT is encouraging designers to learn more about these methods and to seek approval for their use when designing NJDOT projects. NJDOT’s geotechnical team anticipates that, with familiarity, project managers will support additional funding for A-GaME during the design phase and use within the industry will grow.

Q:  Is there any other information you would like us to know about implementing the A-GaME?

These methodologies provide a wealth of information regarding soil and rock that soil borings and visual observations alone cannot provide us.  These methodologies better assist NJDOT in subsurface exploration for our highway structures and rockfall mitigation projects, as well as aid in determining pre-construction constructability issues on our heavily traveled waterways.


FHWA. (n.d.) Advanced Geotechnical Methods in Exploration (A-GaME). Retrieved from: https://www.fhwa.dot.gov/innovation/everydaycounts/edc_5/geotech_methods.cfm

Kelley V.C. (1987) Joints and fractures. In: Structural Geology and Tectonics. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg. Retrieved from:  https://doi.org/10.1007/3-540-31080-0_56

NJDOT (n.d.). Innovative Initiative: What are Advanced Geotechnical Methods in Exploration? Retrieved from:  https://www.njdottechtransfer.net/advanced-geotechnical-exploration-methods/

Palmström A. (2001). Measurement and Characterization of Rock Mass Jointing, Chapter 2, In-Situ Characterization of Rocks. Editors: V.M. Sharma and K.R. Saxen. Retrieved from:   http://rockmass.net/ap/69_Palmstrom_on_Jointing_measurements.pdf

United States Geological Survey (n.d.) Geologic Units Containing Talus. Retrieved from: https://mrdata.usgs.gov/geology/state/sgmc-lith.php?code=1.5.5


Share Your Ideas on the NJ Transportation Research Ideas Portal!

The New Jersey Department of Transportation’s (NJDOT) Bureau of Research invites you to share your ideas on the NJ Transportation Research Ideas Portal.

We are asking NJDOT’s research customers and other transportation stakeholders to propose research ideas for the NJDOT Research Program. Join us in finding workable solutions to problems that affect the safety, accessibility, and mobility of New Jersey’s residents, workers, visitors and businesses.

REGISTER TO PARTICIPATE.  Once you are registered, you may submit ideas at any time.  If you registered last year, you do not need to register again.

HOW DO I SUBMIT AN IDEA?  Only registered participants can log in to submit a new idea or vote on other ideas to show your support. Register at the NJ Transportation Research Ideas website welcome page here:  https://njdottechtransfer.ideascale.com/

NEXT ROUND OF RESEARCH.  Please submit your research ideas no later than December 31, 2020 for the next round of research RFPs. The NJDOT Research Oversight Committee (ROC) will prioritize research ideas after this date, and high priority research needs will be posted for proposals.

Questions about how to register?
Email: ideas@njdottechtransfer.net

For more information about NJDOT Bureau of Research, visit our website: https://www.state.nj.us/transportation/business/research/

Or contact us:  Bureau.Research@dot.nj.gov or (609) 963-2242

Build a Better Mousetrap Competition DEADLINE EXTENDED TO OCTOBER 1st!

People involved in the transportation industry often find better ways to do their jobs. Whether it’s a new gadget that improves the quality and safety of a project, or an innovative process that reduces costs and improves efficiency,  the people on the front lines are often the source of the innovations that become the latest and best practices.

New Jersey's Build a Better Mousetrap Competition provides a great opportunity to share new ideas with others and across the country.  We are looking for submissions from employees of local or state public agencies (municipalities, counties, parks commissions, NJ Department of Transportation, NJ Transit) that have developed new solutions to problems or found better ways of doing things. We will gather the best ideas from around the state and judge them using a 5-point rating system. The highest scoring entries will be entered into a Build a Better Mousetrap National competition.

Click the Better Mousetrap Competition for more information including an entry form to share your innovation and get in the game! Due to COVID-19, we have extended the deadline date for submissions to October 1st.

Want to know more about past winners of the New Jersey competition? Check out the videos below!

2018 Winner: Roncovitz Post Pusher and Post Puller, NJDOT Crew 333

2019 Winner: Bridge Fender Navigation Lighting Reflective Backup System, Gerald Oliveto, NJDOT Operations Support and Engineering

FHWA Announces Every Day Counts (EDC-6) Innovation Areas

Every two years, FHWA works with state transportation departments, local governments, tribes, private industry and other stakeholders to identify and champion a new collection of innovations that merit accelerated deployment through the Every Day Counts Program (EDC). The FHWA’s Center for Accelerated Innovation (CAI) has recently issued the next round of areas of innovation, EDC-6.

EDC is a state-based model that identifies and rapidly deploys proven, yet underutilized innovations to shorten the project delivery process, enhance roadway safety, reduce traffic congestion, and improve environmental sustainability. Proven innovations promoted through EDC facilitate greater efficiency at the state and local levels, saving time, money and resources that can be used to deliver more projects.

FHWA’s CAI fosters collaboration between stakeholders within the transportation community through the State Transportation Innovation Councils (STIC), which are charged with evaluating innovations and spearheading their deployment in each state.

FHWA announced that it will officially launch EDC-6 by webinar on September 23, 2020. More information is expected to follow regarding virtual summits during which transportation leaders and front-line professionals from across the country will discuss and identify opportunities for implementing the innovations that best fit the needs of their respective state transportation program. Following the summits, New Jersey will finalize their selection of innovations, establish performance goals for the level of implementation and adoption over the upcoming two-year cycle, and begin to implement the innovations with the support and assistance of the technical teams established for each innovation.  Further descriptions of each of the EDC-6 Innovations are below:

Crowdsourcing for Advancing Operations. State and local transportation agencies need real-time, high-quality, and wide-ranging information to optimize roadway operations for reduced congestion and increased safety. Agencies are increasing the quality and quantity of operations data with crowdsourcing, which enables staff to make better decisions that lead to safer and more reliable travel and apply proactive strategies cost effectively. With crowdsourced data from multiple streams, agencies can capture in real time what happens between sensors, in rural areas, along arterials, and beyond jurisdictional boundaries.

e-Ticketing and Digital As-Builts. Highway construction projects generate massive amounts of valuable data that historically were communicated via paper, but agencies are improving on paper process by integrating them into electronic and digital workflows. Electronic ticketing improves the tracking, exchange, and archiving of materials tickets. Digital information, such as three-dimensional design models and other metadata, enhances the future usability of as-built plans for operations, maintenance, and asset management. Both can increase project safety, quality, and cost savings through efficient data gathering and sharing.

Strategic Workforce Development is among the innovative initiatives in EDC-6 offering strategies to identify, train, and place workers for highway construction jobs.

Next-Generation Traffic Incident Management: Integrating Technology, Data and Training. More than 6 million traffic crashes are reported each year, creating congestion and putting motorists and responders at risk of secondary crashes. Next-generation traffic incident management (NextGen TIM) builds on FHWA’s national TIM responder training program to shorten the duration and impact of incidents and improve the safety of motorists, crash victims, and responders. NextGen TIM offers tools, data, and training mechanisms that can benefit both new and existing TIM programs, including local agency and off-interstate applications.

Strategic Workforce Development. The demand for highway construction, maintenance, and operations workers is growing while the transportation industry is experiencing a revolution of emerging technologies that require new skills. The Highway Construction Workforce Partnership developed strategies and resources to demonstrate the value of a career in transportation and fill the jobs that support the Nation’s highway system. Resources include the “Identify, Train, Place” workforce development playbook and Roads to Your Future outreach campaign to attract and retain workers in highway construction jobs.

Targeted Overlay Pavement Solutions. Pavement overlays represent a significant portion of highway infrastructure dollars. Many pavements in the highway system have reached or are nearing the end of their design life while carrying traffic that exceeds their initial design criteria. Targeted overlay pavement solutions (TOPS) are now available for asphalt and concrete pavements that enable agencies to maximize their investment and help ensure safer, longer-lasting roadways. TOPS will improve performance, lessen traffic impacts, and reduce the cost of pavement ownership.

Ultra-High Performance Concrete for Bridge Preservation and Repair. Ultra-high performance concrete (UHPC)—a fiber-reinforced, cementitious composite material with mechanical and durability properties that far exceed those of conventional concrete—has become popular for field-cast prefabricated bridge elements. Bridge preservation and repair is a new application of UHPC that offers superior strength, enhanced performance, and improved life-cycle cost over traditional methods.

Virtual Public Involvement. Public engagement during transportation project planning and development helps agencies identify issues and concerns early in the process, which can ultimately accelerate project delivery. Virtual public involvement supports agency efforts to engage the public more effectively by supplementing face-to-face information sharing with technology. Techniques such as telephone town halls, online meetings, and social media increase the number and variety of ways to inform the public, receive feedback, and collect and consider stakeholder input.

STIC Incentive Funding Grant Awarded for Local Aid Software Training

FHWA recently announced the award of a State Transportation Innovation Council (STIC) funding grant ($38,490) to support NJDOT’s Division of Local Aid and Economic Development in their efforts to deliver software training to NJDOT and local transportation agency staff to perform electronic plan reviews.

The STIC-funded training initiative will be provided in conjunction with NJDOT’s efforts to implement features of the Project Management and Reporting System (PMRS), initially launched in 2018, to establish electronic document management, electronic plan review, and other 21st century project management innovations to help make project management more efficient. The PMRS is also being designed to integrate with tools, such as Bluebeam® Revu® and geographic information systems (GIS), to enable collaborative plan review and georeferencing project data.

NJDOT is continuing with its plan for an enterprise innovation shift to electronic project management. The NJDOT Division of Local Aid is about to implement Phase 2 of the PMRS.   This implementation includes transitioning plan review from a paper-based process to an electronic process offering greater standardization and tracking capabilities. The Department’s shift is well-aligned with EDC-3’s e-Construction initiative and Local Aid’s objectives to improve program delivery through electronic review.

With this shift, Local Aid project managers will have easier access to project plans and documents from the District Offices in electronic formats from anywhere.  The innovations embedded in the platform and supporting software will enable easy file sharing, efficient project transfers, tracking comments and their resolution, and the ability to track and review previous project phases more efficiently.

The STIC funding will support the NJDOT Division of Local Aid in the development of a software training program for municipal and county engineers and Local Aid staff.  The training will be conducted over a two-month period with various morning and afternoon classes to offer flexibility in scheduling and attendance.  The initial “live” training sessions are expected to be recorded for future online, “on-demand” use.  The course development and training initiative will be carried out by a team that manages the Local Aid Resource Center in association with NJDOT Local Aid staff.

The training seeks to accomplish key goals aligned with the Department’s commitment to using technology to enable staff to be more efficient in accomplishing routine tasks and collaborative activities with external stakeholders.   Ultimately, the transition to an online tool is expected to reduce paper consumption as well as centralize and standardize project management activities.

Click on NJ STIC Incentive Funding Grants to get more information on the purpose, eligibility and uses for which the NJ STIC has sought incentive funding in recent years.


Pavement Preservation Treatments at NJDOT

NJDOT's Pavement and Drainage Management and Technology Unit is advancing the use of Pavement Preservation treatments on the state's roads to increase safety, enhance durability, improve customer experience and minimize costs. Pavement rehabilitation is needed for deficient roadways, but pavement preservation can extend pavement life for state highways in good and fair condition. 

Watch this educational video to learn more about the Pavement Preservation program at NJDOT and the tools in the pavement preservation toolbox. The video explains the rationale for maintaining roads in a state of good repair and establishing a dedicated program for pavement preservation. The video highlights several pavement preservation treatments in the NJDOT toolbox and how, when and why the treatments are used.